
AFRL-IF-RS-TR-2006-237
Final Technical Report
July 2006

INCREASING INTRUSION TOLERANCE VIA
SCALABLE REDUNDANCY

Carnegie-Mellon University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. S469

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

 AFRL-IF-RS-TR-2006-237 has been reviewed and is approved for publication.

APPROVED: /s/

 ROBERT J. VAETH
 Project Engineer

 FOR THE DIRECTOR: /s/

 WARREN H. DEBANY, Jr.
 Technical Advisor, Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JULY 2006
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Jun 04 – Dec 05
5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-04-1-0238

4. TITLE AND SUBTITLE

INCREASING INTRUSION TOLERANCE VIA SCALABLE
REDUNDANCY

5c. PROGRAM ELEMENT NUMBER
62301E

5d. PROJECT NUMBER
S469

5e. TASK NUMBER
SR

6. AUTHOR(S)

Michael K. Reiter and Gregory R. Ganger

5f. WORK UNIT NUMBER
SP

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie-Mellon University
5000 Forbes Ave.
Pittsburgh PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA AFRL/IFGB
3701 N. Fairfax Dr 525 Brooks Rd
Arlington VA 22203-1714 Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-237

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA # 06-496

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This final technical report presents a novel protocol to achieve invariability of nested method invocations. This protocol tolerates
Byzantine faulty clients, as is necessary when methods are invoked from other distributed objects that themselves must withstand
Byzantine faults. This final report further presents a detail of this protocol, an argument about its correctness and a description of its
implementation and performance in a distributed object system.

15. SUBJECT TERMS
Protocol, PASIS, Byzantine, fault-scalability

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Robert Vaeth

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

83
19b. TELEPONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI-Std Z39-18

 i

TABLE OF CONTENTS

1 INTRODUCTION... 1
1.1 Approach / Overview of the Problem...1
1.2 Contributions ...2

1.2.1 Read-write Storage.. 2
1.2.2 Richer Specialized Objects – the Query/Update Protocol 3
1.2.3 Nested Objects ..4

1.3 Technology Transfer ...4
1.3.1 Impact.. 4
1.3.2 Technology Transfer Avenues... 4

1.4 Red Teaming of R/W Storage Protocol ...5
1.5 Document Overview ..5

2 TECHNOLOGY OVERVIEW ..6
2.1 Background to Our Technical Approach..6

2.1.1 Techniques ..6
2.1.2 Systems... 11
2.1.3 Comparison with Pre-Existing Technology.. 13

3 THE READ WRITE CONSISTENCY PROTOCOL & LAZY VERIFICATION................. 15
3.1 Introduction..15

3.1.1 The Consistency Protocol.. 15
3.1.2 Lazy Verification .. 16

3.2 Efficient Byzantine-tolerant Erasure-coded Storage: Background16
3.3 System Model..17
3.4 Byzantine Fault-tolerant Consistency Protocol..18

3.4.1 Overview..18
3.4.2 Mechanisms ..18
3.4.3 Pseudo-code ... 20
3.4.4 Protocol Constraints .. 22

3.5 Evaluation..23
3.5.1 PASIS Implementation .. 23
3.5.2 Experimental Setup ... 24
3.5.3 Mechanism Costs .. 25
3.5.4 Performance and Scalability.. 25
3.5.5 Concurrency .. 27

3.6 Summary ...27
3.7 Lazy Verification in Byzantine Fault-Tolerant Distributed Storage Systems:
Background ...27

3.7.1 System Model and Failure Types .. 27
3.7.2 Read/write Protocol and Delayed Verification ...28
3.7.3 Related Work...28

3.8 Lazy Verification ..29
3.8.1 Lazy Verification Basics...29
3.8.2 Cooperative Lazy Verification.. 30
3.8.3 Garbage Collection.. 31

3.9 Implementation..33

 ii

3.10 Evaluation..34
3.10.1 Experimental Setup ... 34
3.10.2 Verification Policies and Operation Latencies ... 35
3.10.3 Impact on Foreground Requests ... 36

3.11 Summary ...36
4 FAULT SCALABLE BYZANTINE FAULT-TOLERANT SERVICES: Q/U PROTOCOL37

4.1 Introduction..37
4.2 Efficiency and Scalability ...38

4.2.1 Efficiency ...39
4.2.2 Throughput Scalability ...39

4.3 The Query/Update Protocol...40
4.3.1 System Model.. 40
4.3.2 Overview.. 41
4.3.3 Classification and Constraints ... 43
4.3.4 Q/U Protocol Pseudocode ... 45
4.3.5 Implementation Details .. 47
4.3.6 Example Q/U Protocol Execution .. 51
4.3.7 Multi-object Updates.. 51
4.3.8 Correctness ... 52

4.4 Evaluation..53
4.4.1 Experimental Setup ... 53
4.4.2 Fault-scalability.. 53
4.4.3 Fault-scalability Details.. 55
4.4.4 Q/UNFSv3 Metadata Service .. 56

4.5 Conclusions...57
5 NESTED OBJECTS IN A BYZANTINE QUORUM-REPLICATED SYSTEM.................58

5.1 Overview ...58
5.2 Background ...59
5.3 Authorization Framework ..60

5.3.1 Assumptions .. 60
5.3.2 Delegation ... 60

5.4 Operation Ordering..63
5.4.1 Client Protocol ... 64
5.4.2 Server Protocol.. 65
5.4.3 Liveness ...67
5.4.4 Performance ...67

5.5 Summary ..69
6 REFERENCES.. 70

 iii

LIST OF FIGURES

Figure 2.1: A data item replicated at five servers S1,…,S5 ...7
Figure 2.2: The M-grid construction, n = 7× 7, b = 3, with one quorum shaded. ..9
Figure 2.3: Distributed objects with nesting. ...10
Figure 2.4: High-level architecture of PASIS survivable storage. ...12
Figure 3.1: Write operation pseudo-code..20
Figure 3.2: Read operation pseudo-code ...21
Figure 3.3: Mean Response time..26
Figure 3.4: Response breakdown. ..26
Figure 3.5: Throughput (b = 1). ...26
Figure 3.6: Illustration of the construction and validation of timestamps. ...30
Figure 3.7: Communication pattern of lazy verification (a) without and (b) with cooperation.31
Figure 3.8: Operation latencies for different verification policies. ...35
Figure 3.9: Write throughput, as a function of history pool size, for four verification policies.....................35
Figure 4.1: Illustration of fault-scalability... 38
Figure 4.2: Example of client and server state..41
Figure 4.3: Query/Update pseudo-code..46
Figure 4.4: Fault-scalability. ..54
Figure 4.5: Details of Q/U protocol fault-scalability. ..55
Figure 5.1: Distributed objects. ... 59
Figure 5.2: Nested objects. ...61
Figure 5.3. Client side of ordering protocol. ..64
Figure 5.4: Server side of ordering protocol..66
Figure 5.5. Mean response time. ..68

 iv

LIST OF TABLES

Table 2.1: Masking quorum systems and their properties ..10
Table 3.1. Computation costs in PASIS in µs. ..25
Table 4.1: Example Q/U protocol execution. ..52
Table 4.2: Average response time in µs. ..56
Table 4.3: Q/U-NFSv3 metadata service operations. ...57
Table 4.4: Q/U-NFSv3 PostMark benchmark. ..57

 1

1 INTRODUCTION
This report summarizes the results of the work on the DARPA under project entitled
INCREASING INTRUSION TOLERANCE VIA SCALABLE REDUNDANCY Air Force
contract FA8750-04-1-0238. The project worked toward dramatically increasing the scalability
of fault- and intrusion-tolerant services, particularly in the efficiency of tolerating significant
numbers of failures and compromises. This project has built upon foundational work laid in two
previous, independent and concurrent DARPA projects: Information Processing Technology
Office (IPTO) PASIS project for implementing survivable data storage, and Advance
Technology Office (ATO) Fleet project for implementing an intrusion-tolerant object-oriented
system, integrating the lessons and advances of these individual projects as a basis for further
innovation. Indeed, it is from this cross-pollination that many of the advances have derived.
Specifically, we have pushed the state-of-the-art in intrusion-tolerant distributed services in
following ways.

1. We developed novel protocols for distributed data storage that offer linearizable data
access, wait-free liveness, tolerance of Byzantine client and server failures (corruptions),
and far superior latency and throughput as the system scales. These protocols exploit
server versioning, quorums, and lazy verification of updates to achieve their performance,
especially in the common cases of no concurrency or attacks. Relative to the state-of-the-
art, our protocols provide at least a threefold improvement in access latency, even for
relatively small numbers of servers, a gap that grows as the number of servers increases.
Simultaneously, they increase by a factor of five the throughput achieved by the previous
state-of-the-art, even for relatively small server configurations, and also scale better as
the system grows.

2. We developed protocols to support fault-scalable linearizable access to services. For

example, directories are services that have a specific structure and a small set of legal
operations (e.g., inserting a new directory entry rather than opaque writes). Because of
the additional semantic information available about what constitutes a valid operation
(arbitrary overwriting is disallowed), our protocols can constrain even corrupt clients
form destroying the integrity and consistency of directory structures. We observe
throughput improvements of a factor of four when tolerating five Byzantine faults,
compared to the previous state-of-the-art.

3. We developed protocols for highly resilient distributed object-based systems that offer

linearizable method invocations, including nested invocations in which one object is
invoked by another, where some replicas of each may be corrupt. The result is
unprecedented scalability for general intrusion-tolerant service construction. Our
protocols provide sublinear growth in access cost as the number of object replicas grows,
as compared to the linear-or-worse access costs offered by existing approaches.

1.1 Approach / Overview of the Problem
This project targeted dramatic increases in the scalability of intrusion-tolerant services.

At the core of such services are the protocols used to invoke server functions, and our goal was
to develop new protocols that scale better than the state-of-the-art. Doing so enables creation of
intrusion-tolerant services that can survive large numbers of server corruptions.

 2

Distributed services typically utilize redundant state across servers to tolerate faults. When the
fault model includes arbitrary corruption (Byzantine failure) of individual servers, the
predominant form of distributed service implementation is state machine replication
[Schneider90]. In this approach, all servers retain identical state and process all client requests in
the same order, thereby keeping all server states synchronized. However, this approach scales
poorly: First, since it does not permit load dispersion among servers, adding additional servers
cannot enable further throughput (and hence scaling in the number of client requests); instead, it
exacerbates the cost of ensuring the same processing order across all servers. Second, state
machine replication offers little opportunity to move processing load from servers to clients.
Typically client processing is limited to simply obtaining return results from individual servers
and accepting the response received from a majority of servers.

The research program we developed to address these issues consisted of three progressive tasks,
each of which leveraged and built upon the ones before it, with the goal of efficiently integrating
the techniques of versioning and Byzantine quorums into fault- and intrusion-tolerant protocols
for efficiently and scalably supporting increasingly general service types. The three tasks were:

• To develop, prove, implement and experiment with protocols that scale to highly fault- and
intrusion-tolerant access to read-write data storage with much better efficiency than today’s
state-of-the-art.

• To develop, prove, implement and experiment with protocols that scale to highly fault- and

intrusion-tolerant access to structured data objects (e.g., directories and indices) with much
better efficiency than today’s state-of-the-art.

• To develop, prove, implement and experiment with protocols that scale to highly fault- and

intrusion-tolerant access to arbitrary deterministic objects (as in object-based programming
systems), including support for nesting of object calls, with much better efficiency than
today’s state-of-the-art.

1.2 Contributions
Papers documenting this research have been accepted at recognized conferences, including the
International Conference on Distributed Computing Systems [Goodson04a], the IEEE
Symposium on Reliable Distributed Systems [Fry04, Abd-El-Malek05a], and the ACM
Symposium on Operating Systems Principles [Abd-El-Malek05c]. Additional publications are in
preparation. Carnegie Mellon Technical Reports (e.g., [Abd-El-Malek05b]) and a Doctoral thesis
[Wylie05] have also been published with additional details.

1.2.1 Read-write Storage
 Building on the PASIS architecture for survivable storage, one of the first tasks addressed in this
research was to develop a protocol that uses versioning to implement linearizable [Herlihy90]
read-write storage despite the arbitrary corruption of a limited number of servers and even clients
with authority to perform reads and writes on the data. (Versioning is additionally useful for
recovering from written values that are incorrect in the context of the application [Strunk00], as
may be necessary when corrupted clients overwrite data.) Our protocol provides a very strong
liveness property called wait freedom [Herlihy91], which intuitively means that each client can
drive its own reads and writes to completion in finitely many steps and without help from other

 3

clients. The protocols provided unprecedented efficiency and scalability for fault-tolerant
services, via the combination of versioning and Byzantine quorums.

We began our development of a Byzantine fault-tolerant read/write protocol by describing a
decentralized consistency protocol for survivable storage that exploits local data versioning
within each storage-node.

Such versioning enables the protocol to efficiently provide linearizability and wait-freedom of
read and write operations to erasure-coded data in asynchronous environments with Byzantine
failures of clients and servers. By exploiting versioning storage-nodes, the protocol shifts most
work to clients and allows highly optimistic operation: reads occur in a single round-trip unless
clients observe concurrency or write failures. Measurements of a storage system prototype using
this protocol show that it scales well with the number of failures tolerated, and its performance
compares favorably with an efficient implementation of Byzantine-tolerant state machine
replication.

To facilitate the construction of a versatile storage infrastructure, a set of related protocols has
been developed for reading and writing data objects called the Read/Write Protocol Family
(R/W-PF). The R/W-PF provides versatility: objects with different per-object resiliency
requirements can be stored in the same storage infrastructure. The costs (response time, number
of servers required, etc.) of storing an object are commensurate with its resiliency requirements.
The R/W-PF incorporates versatile storage mechanisms, such as erasure codes, witnesses, and
quorums, in its design, allowing the efficiency of read and write access to stored objects to be
tuned to meet capacity and performance requirements. Measurements of PASIS, a prototype
storage system based on the R/W-PF, demonstrate its versatility as well as fault-scalability.

Verification of write operations is a crucial component of Byzantine fault-tolerant consistency
protocols for storage. Lazy verification shifts this work out of the critical path of client
operations. This shift enables the system to amortize verification effort over multiple operations,
performing verification during otherwise idle time, with only a sub-set of storage-nodes carrying
out the task. Measurements of lazy verification in a Byzantine fault-tolerant distributed storage
system show that the cost of verification can be hidden completely from both the client read and
write operation in workloads with idle periods. Furthermore, in workloads without idle periods,
lazy verification amortizes the cost of verification over many versions and so provides a factor of
four higher write bandwidth when compared to performing verification during each write
operation.

1.2.2 Richer Specialized Objects – the Query/Update Protocol
We have developed protocols for selected services (objects) with richer types of operations than
simple reads and writes, such as insertions into a directory or allocations of a resource. We have
extended the scalable and efficient read-write protocols to support linearizable access to this type
of object. For example, directories are objects of a specific structure that are accessed using
operations other than opaque reads and writes (e.g., inserting a new directory entry). Because of
the additional semantic information available about what constitutes a valid operation on a
directory (e.g., arbitrary overwriting is disallowed), correct servers will use this information to
constrain even corrupt clients from destroying the consistency of directory structures.

A fault-scalable service can be configured to tolerate increasing numbers of faults without
significant decreases in performance. Our Query/Update (Q/U) protocol enables the construction

 4

of fault-scalable Byzantine fault-tolerant services. The optimistic quorum-based nature of the
Q/U protocol allows it to provide better throughput and fault-scalability than replicated state
machines using agreement-based protocols. A prototype service built using the Q/U protocol
outperforms the same service built using a popular replicated state machine implementation at all
system sizes in experiments that permit an optimistic execution. Moreover, the performance of
the Q/U protocol decreases by only 36% as the number of Byzantine faults tolerated increases
from one to five, whereas the performance of the replicated state machine decreases by 83%.

1.2.3 Nested Objects
We have developed protocols to implement linearizable access to arbitrary deterministic objects
(i.e., objects implementing any function), both from centralized clients and other distributed
objects of which a limited number of replicas may be corrupt. These protocols have been
developed for object-oriented systems in which one distributed object may be “passed into”
another as an argument in a method invocation. We have developed a framework that supports
nested method invocations among Byzantine fault-tolerant, replicated objects that are accessed
via quorum systems. A challenge in this context is that client object replicas can induce
unwanted method invocations on server object replicas, due either to redundant invocations by
client replicas or Byzantine failures within the client replicas. At the core of our framework are a
new quorum-based authorization technique and a novel method invocation protocol that ensure
the linearizability of nested method invocations despite Byzantine client and server replica
failures.

1.3 Technology Transfer
1.3.1 Impact
Our protocols provide significant efficiency and scalability benefits over today's state-of-the-art
approaches to fault- and intrusion-tolerance. For example, we have shown threefold latency
improvements for relatively small configurations (e.g., those tolerating 3–5 Byzantine server
failures), with improvements increasing as system sizes and fault-tolerance grow. Likewise, a
twofold improvement in throughput has been seen, again growing with system size because of
superior scalability. Scalability also shows up in terms of efficiency retention as the system
scales in all major dimensions: number of servers, number of failures tolerated, and number of
clients.

Such large improvements are critical to making highly fault-tolerant and intrusion-tolerant
services practical; without them, such tolerances are limited to small-scale systems providing
only simple types of services while still incurring substantial performance costs.

1.3.2 Technology Transfer Avenues
A critical aspect of all DoD-funded work is technology transfer to military customers. For
infrastructure research, direct transfer is extremely difficult, because it is inappropriate to
experiment with critical military infrastructure in real environments—it is unthinkable to
endanger military operation with infrastructure technology that has not been through rigorous,
production-quality testing. This creates a dangerous tension, since the best role for DoD-funded
research is exploration of risky, long-horizon new concepts—approaches to building

 5

infrastructures, like those described herein. Over the years, CMU’s infrastructure researchers
have developed a proven approach to technology transfer, based on a combination of open
source software and industry consortia. Of course, sharing software prototypes publicly allows
others to replicate our experiments and build on the work. To ensure that our research results
transfer to military systems, however, we work closely with the industry that provides military
infrastructure. We have a close relationship and frequent interactions with industry leaders
through our solid consortia in storage systems and security. Such interactions achieve the kind of
technology transfer truly needed for new infrastructure approaches to become reality: integration
into COTS components.

Along with publishing our results in several recognized, juried conferences, over the course of
this research we have spent large amounts of time explaining our fault- and intrusion-tolerant
services to industry leaders from the many companies who support our research (including EMC
Corporation, EqualLogic, Inc., Hewlett-Packard Labs, Hitachi, IBM, Intel Corporation,
Microsoft Research, Network Appliance, Oracle Corporation, Panasas, Inc., Seagate
Technology, Sun Microsystems and Veritas). These interactions have refined the practicality of
our work and its acceptance by the various companies. Important meetings with our sponsors
include the annual Parallel Data Lab (http://www.pdl.cmu.edu) Retreat and Open House events
and the Cylab (http://www.cylab.cmu.edu) courses and Open House events, during which
technical leaders from member companies hear about and discuss our research activities. Based
on these interactions, we expect to see several of the concepts explored in this research appearing
in products available to DoD users in the near term and we feel it is the most effective way for
technology transfer of infrastructure research projects to achieve DoD deployment.

1.4 Red Teaming of R/W Storage Protocol
On December 2, 2005, a red team exercise was held at Carnegie Mellon to assess the R/W
storage protocol developed as part of this project. The exercise was designed and run by a group
from Sandia National Laboratories, including Kandy Phan and Michael Collins. It was also
attended by five CMU researchers: PI Mike Reiter, Co-PI Greg Ganger, Michael Abd-El-Malek,
Pratyusa Manadhata and Oren Dobzinski. Over the course of the day, possible attacks on the
protocol and systems using the protocol were explored. The exercise increased our confidence in
the proven correctness of the protocols and their value, as no new attacks (beyond those laid out
as assumptions in the papers) were identified. The final report on the red teaming exercise is not
yet available.

1.5 Document Overview
The rest of this document is structured as follows: Chapter 2 presents a high-level overview of
the technology. Chapter 3 reviews the read/write protocol. Chapter 4 describes the
query/update protocol and Chapter 5 explores support for nested objects.

 6

2 TECHNOLOGY OVERVIEW

2.1 Background to Our Technical Approach
In this section we describe the techniques from which we build, and the manner in which we combined
and advanced them to achieve unprecedented scalability in intrusion-tolerant services. Section 2.2.1
begins by describing various challenges we faced and the techniques from which we innovated during our
research. Background on the PASIS and Fleet systems which were the building blocks of this project is
provided in Section 2.1.2.

2.1.1 Techniques
Distributed services, linearizability, and wait freedom. Distributed services employ multiple servers in
order to survive failures and/or corruptions. State for the service is spread redundantly across servers, and
a client interacts with some number of servers in order to obtain service. When server corruptions are to
be tolerated, it is generally necessary for the client to interact with multiple servers and to use the
responses from multiple servers to corroborate a response1.

A central challenge in implementing distributed services is ensuring proper service semantics in the face
of concurrent accesses and client failures (even benign ones). Concurrent accesses to the service can drive
server states apart, due to servers processing non-commutative operations in different orders. Client
failures can result in some operations being performed only partially, i.e., at fewer than the required
number of servers. Ideally, and despite these problems, the service should appear to the client application
as a centralized one in which each operation occurs in isolation and completely. The strongest and most
commonly accepted formalization of this property for a service (or object) is linearizability [Herlihy90].
Informally, linearizability requires that the return results of all operations are consistent with some
sequential execution of these operations, in which each is performed at a distinct point in real time
between the moment the client began the operation and the time the client received its response.

Outside our work, all systems of which we are aware that implement linearizable services in the face of
Byzantine server failures do so by imposing the linearization order explicitly at the time the operation is
submitted, and then enforcing that all (correct) servers process requests in this linearization order. In this
way, all correct servers execute in lock-step and retain identical states (presuming the service is
deterministic), and therefore remain capable of corroborating one another's responses. This approach is
often called state machine replication [Schneider90], and the mechanism that imposes the linearization
order on client requests is often called atomic broadcast.

The strongest generally considered liveness condition for linearizable implementations is wait freedom
[Herlihy91, Jayanti98]. Informally, in our model, wait freedom requires that each correct client can drive
its operation to completion in finitely many steps, assuming only some limit on the number of servers that
fail (and that correct servers make progress). In particular, operation completion does not require that
other clients make progress; as such, it intuitively precludes the use of locking to enforce linearizability, if
one client must drop locks for another to perform its operation. We emphasize that wait-freedom is a very
strong property that ensures progress absent any timing assumptions about the rate at which processes
make progress or that messages transit the network, i.e., even in an asynchronous system. Eliminating
such timing assumptions is important in systems that may come under attack, where “assumption”
equates to “vulnerability”.

A seminal result in distributed computing is that only read-write objects, and objects that can be
implemented using them, have wait-free linearizable implementations [Herlihy91]. That is, while a read-

1 The client can also interact with servers indirectly through a single server, provided that the client can verify (e.g.,
via cryptography) that multiple servers contributed to the final result.

 7

write storage service may have a wait-free implementation, an approach such as state machine replication,
which implements linearizable operations for many other service types (e.g., read-modify-write), has no
wait-free implementation. At some level this can be viewed as another expression of the well-known
impossibility of deterministically live atomic broadcast [Fischer85].

Versioning. Comprehensive versioning (non-destructive updates for all operations) was introduced in the
context of secure storage by our related self-securing storage project [Strunk00]. In this project, we
implemented comprehensive versioning within a server itself, so that each write to a block creates a new
version of the block without destroying the previous version. Similarly, delete operations hide the
“deleted” data without actually destroying it. In our previous work, this was used to ensure that log files
could not be overwritten by an attacker who compromised the computer (even the kernel) to which the
storage was connected, and to permit recovering from attackers who delete or overwrite critical files.
Obviously, the server cannot maintain these extra copies of blocks forever, but our empirical studies
suggest that modern disks under typical workloads can keep these copies for weeks before needing to
delete them. (Workloads that strive to suddenly reduce this duration are most likely indicative of an
attack, and so corrective action can be taken.)

This research builds from our observation that versioning can be used as a mechanism to aid the provision
of strong concurrent semantics and intrusion tolerance in a very different way. To illustrate the basic idea,
consider a distributed service consisting of servers S1,…,S5, each storing a replica of some data item
whose value is initialized to ⊥. The initial state of the system is shown in Figure 2.1(a). For this service to
be fault tolerant, we must permit operations to complete without contacting all servers (since some servers
may not respond). Suppose for the sake of illustration that a write operation completes after writing to
three servers, and consider a write operation that occurs with value v0 at time t, yielding a configuration as
shown in Figure 2.1(b)

.

Figure 2.1: A data item replicated at five servers S1,…,S5

A subsequent reader R that observes these three copies of v0 is required to return v0 as the written value,
by the constraints of linearizability. Now suppose second and third writers begin operations to write
values v1 and v2 at time t', yielding the scenario in Figure 2.1(c). Here, the writes of v1 and v2 are not yet
complete, either because the writers are slow or have failed. Now consider the situation that a reader R'
sees at time t'. If updates are destructive, then R' is unable to determine which of v0, v1, v2, or ⊥ to return,
as it cannot determine whether any writes ever completed. Linearizability requires that if R returned v0,
then R' cannot return ⊥. However, if R' returns one of v0, v1, or v2, then a subsequent reader R'' may not
even see the value R' returns when R'' reads from four of the five servers. (Again, R'' cannot be required
to read from all servers due to the need to tolerate a server failure.)

The advantage of versioning is that writes are not destructive. In Figure 2.1(c), if versioning is used, a
reader can observe the history of updates at each server, and so could see v0 in addition to v1 at S1, and v0
in addition to v2 at S3. This additional information permits R' to determine, e.g., that v0 was a complete
write if it also observes S2, or at least that v0 could have been a complete write even if R' cannot read S2,

(a) at initialization (b) at time t (c) at time t' > t

 8

ensuring that R' will not look to writes before v0 to return as the result of this read (which would violate
linearizability).

The above simple example is intended only to provide intuition as to why versioning can assist in
implementing linearizable distributed services. At a high level, it permits clients to “look into the past” to
determine whether a write of a value completed. Moreover, it appears that versioning also provides the
ability to tolerate Byzantine servers and clients in a similar way. For example, if in Figure 2.1(c), server
S1 is corrupt and “manufactures” the value v1 that was never part of a write operation, then v1 will not
appear in the histories of any correct servers. Similarly, if a corrupted client writes different values to
different servers as part of the same write operation, readers may be able to look “behind” this
information to return a value that had previously been written properly. These properties will provide the
basis for an algorithm that discards values based on the number of servers’ histories in which they appear.

Versioning permits us to reduce the per-request overhead on servers, and thus improve the scalability of
the system. The example above demonstrates that versioning provides a basis on which readers can
interpret histories of written values without the service ordering all write operations as they are
submitted. In particular, Figure 2.1(c) shows that even with concurrent writes of v1 and v2, and with
servers processing these writes in a different order, versioning provides a basis by which a client can
determine a proper return value. A central part of this work was to develop these intuitions into a
linearizable, intrusion-tolerant and scalable implementation of read-write data, and to extend these ideas
to develop protocols for richer objects.

We note that if a reader can make a (correct) determination of what value to return simply by reading
backward in the servers’ histories, then this is a sound base on which to build a wait-free protocol. Each
server’s history is finite, and so the client protocol will complete in finitely many steps, regardless of the
depth into servers’ histories it reads to determine the proper return value.

Of course, in practice, servers will not be able to store versions forever, and so an important practical
aspect of this work was managing garbage collection, i.e., pruning servers’ histories. As already
described, our previous research on versioning indicates that for typical file system workloads and with
modern disk capacities, it is generally possible to provision a server so as to delay deletion for weeks. As
such, we have significant room to work in integrating garbage collection into the system.

Quorum systems. Another platform for the advances we pursued here is novel quorum systems.
Intuitively, quorum systems enable clients to complete operations on shared data objects after interacting
with only a typically small subset (quorum) of servers, with no centralized locking or management, and
with no server-to-server interaction. Quorums can be surprisingly small, e.g., comprised of only ()nO
servers out of a total of n servers, and thus client access protocols can efficiently scale to hundreds and
possibly even thousands of servers.

More specifically, given a universe of servers U, a quorum system UQ 2⊆ is a set of subsets (quorums)
of servers with the property that any two quorums intersect. Intuitively, this property can be used to
ensure that consistency is preserved across multiple operations performed at different quorums. For
example, supposing only benign failures for the moment, if a client reads data at a quorum of servers,
then because there is a server in that quorum that also received the last-written value for the data, the
client will be sure to obtain it. Of course, in our setting, simply requiring a non-empty intersection
between two quorums may not suffice, since all servers in that intersection may be corrupt.

To solve this problem, we pioneered the study of quorum systems in the context of arbitrarily (Byzantine)
faulty clients and servers. Intuitively, a quorum system tolerant of Byzantine failures is a collection of
subsets of servers, each pair of which intersects in a set containing sufficiently many correct servers to
guarantee consistency of the replicated data as seen by correct clients. A simple example motivates the
definition of Byzantine quorum systems. Suppose that all servers store a copy of a variable x, and that

 9

there is some (unknown) set B of faulty servers. First a client correctly updates the value of x at a quorum
Q1 of servers, and subsequently another client reads the value of x at the quorum Q2. In order for the
second client to get the correct, latest value of x, it is necessary for that client to distinguish the value
returned by the correct servers in Q1 ∩ Q2 (i.e., the servers in Q1 ∩ Q2 \ B) from the values returned by the
faulty servers and out-of-date correct servers. Supposing that at most a known threshold of b servers are
faulty, i.e., |B| ≤ b, the client can distinguish the correct value if |Q1 ∩ Q2| ≥ 2b+1. In particular, this
condition implies that the correct value is returned by at least b+1 servers, and so the client can safely
discard any value returned by b or fewer servers. Then, from among the remaining values (each of which
was returned by at least one correct server), the client can, for example, identify the latest one using a
logical timestamp protocol.

Byzantine quorum systems can offer surprising load balancing capability. Formally, this capability is
captured via a measure called load [Naor98]. Let an access strategy for a quorum system Q be a
probability distribution on the quorums in Q. Intuitively, for each Q ∈ Q, the access strategy gives the
probability that a client chooses Q in order to access the service. In [Malkhi00b], we explore the load of
each type of quorum system, where the load of a quorum system is the minimal access probability of the
busiest server, minimizing over all access strategies. Load is a formal measure of scalability for quorum
systems, in that a quorum system with lower load can provide better throughput than a quorum system
with higher load. In [Malkhi00b], we present b-masking quorum systems with a load of only)/(nbO ,
which meets the lower bound for the load of Byzantine quorum systems [Malkhi00b]. A simple example
is the M-Grid construction shown in Figure 2.2, where servers are arranged in a logical nn × grid,
and a quorum consists of 1+b rows and 1+b columns.

In [Malkhi00b], we further distinguish between masking Byzantine faults and surviving a possibly larger
number of benign faults, and provide masking quorum systems for this hybrid model. Our systems remain
available in the face of any f crashes, where f may be significantly larger than b. The parameter f is
referred to as the availability of the system. In addition, our constructions demonstrate asymptotic
optimality in two widely accepted measures of quorum systems, namely load and failure probability. The
failure probability is the probability, assuming that each server crashes with some fixed probability that
all quorums in the system will contain at least one crashed server, and thus will be unavailable. The
failure probability is an even more refined measure of tolerance to benign failures than the availability f,
as a good system will tolerate many failure configurations with more than f crashes. Two of the
constructions we achieve in [Malkhi00b] use a boosting technique, which is of interest in itself, as it can
transform any regular (i.e., benign fault-tolerant) quorum system into a masking quorum system for an
appropriately larger system. Thus, it makes all known quorum constructions available for Byzantine
environments (of appropriate sizes).

Figure 2.2: The M-grid construction, n = 7 × 7, b = 3, with one quorum shaded.

 10

Table 2.1 provides a sample collection of Byzantine quorum systems and their properties as functions of
the number n of servers, demonstrating the resilience and cost of these as tools for survivable replication.

System Resilience b Quorum Size

Threshold [Malkhi98a] b < n/4 3n/4

M-Grid [Malkhi00b] 2/nb <)/(nbO

BoostFPP [Malkhi00b] b < n/4)/(nbO

Table 2.1: Masking quorum systems and their properties (b = bound on Byzantine failures)

Nested method invocations. In a non-distributed, object-oriented programming environment, objects are
regularly embedded inside of each other. A field within one object can contain another object. Any given
object can be referenced in multiple locations; it could be referenced in a field of one object, while
simultaneously being nested several layers deep within another object. In the latter case, passing the
embedding object as a parameter to a method may make the embedded object directly available to that
method. In fact, nested objects are fundamental to the object-oriented programming paradigm.

In a distributed, object-oriented programming environment, embedded objects take on a new level of
complexity, as well as an associated level of indirection. Without nesting, distributed objects of the form
we envision are structured as in Figure 2.3(a). This figure shows a client that interacts with object replicas
stored on servers. The client does so via a reference for the distributed object, which we call a handle. All
distributed object interactions go through handles; in fact, with respect to the local programming
environment, the handle itself is the distributed object, and provides the same method invocation interface
as the object replicas. As with local objects, distributed object handles can be embedded within local
objects or within the replicas of other distributed objects, resulting in object nesting; see Figure 2.3(b).
They can be passed around as explicit parameters and as embedded fields of parameters. A single
distributed object could be simultaneously referenced from a client and from the replicas of another
distributed object, as demonstrated in Figure 2.3(b).

Figure 2.3: Distributed objects with nesting.

replicas
handles

client

servers

replicas
handles

client

servers

a) distributed objects b) nested distributed objects

 11

Ensuring correct method invocation semantics in the face of object nesting introduces a number of
challenges. First, a method invocation by the client on (the handle of) a distributed object induces method
invocations on the replicas of that object. Each of these replicas, in turn, may invoke a method on the
handle of the embedded, distributed object it contains. In this scenario, the embedded (“inner”) distributed
object is therefore invoked multiple times, for the same method invocation on the “outer” distributed
object; if these invocations are not idempotent, then the state of the inner distributed object may be
corrupted, and at the very least, the transparency of object distribution will suffer. Second, to support
nested method invocations, it is necessary to grant authority to each replica of the outer object to invoke
methods on the inner object. In an intrusion-tolerant system that presumes that servers may be corrupted,
this implies corrupted clients for the embedded object. Known method invocation protocols for quorum-
based object replication (e.g., that used in Fleet [Malkhi01]) do not ensure consistent method invocations
in the face of corrupted clients. Even if this were ensured, there is nothing to prevent a corrupt client from
“correctly” invoking a method with, e.g., parameters that are incorrect from the application perspective.

Our approach to addressing these issues will be to develop an authorization framework and method
invocation protocol that executes only method invocations performed by at least b+1 client object
replicas, where b denotes the number of corruptions that the client object is designed to tolerate. We have
previously developed such an approach in the context of state machine replication [Narasimhan99], but a
more scalable, quorum-based approach introduces new challenges. In particular, if the client object
replicas invoke different quorums of server replicas in their attempts, then it is possible that no single
server replica, much less a quorum, will witness the same method invocation from sufficiently many
servers to convince it to process the invocation.

2.1.2 Systems
This project utilized the techniques described in Section 2.1.1 to achieve significant advances in
scalability for intrusion-tolerant systems, and address the challenges introduced by these techniques as
outlined there. We experimented with implementations of the protocols that we developed, within the
context of example systems extended to utilize them. Below we provide a brief overview of the two
systems that will primarily serve as testbeds: PASIS and Fleet.

PASIS: PASIS is a survivable storage system developed in a project by the same name funded by
DARPA IPTO. (The funding for this project ended in December 2003.) PASIS provides for the
confidentiality, integrity, and availability of stored data even when some storage nodes fail or are
compromised by an intruder.

It does so by encoding and distributing data across storage nodes. There are many data distribution
schemes applicable to survivable storage, including replication, striping, erasure-resilient coding, secret
sharing, and various combinations (including combinations with encryption). No single data distribution
scheme is right for all systems, and a key focus of the PASIS project has been developing an engineering
understanding of the trade-offs involved with the decision of how data is encoded and distributed
[Wylie01].

 12

Figure 2.4: High-level architecture of PASIS survivable storage. Spreading data redundantly across storage-nodes
improves its fault-tolerance. Clients write and read data from multiple storage nodes.

Figure 2.4 illustrates the abstract architecture of PASIS. To write a data-block D, Client A issues write
requests to storage-nodes, with replicas or shares (when m-of-n erasure coding is employed). To read D,
Client B issues read requests to storage-nodes to ensure the latest update is seen and to fetch sufficient
shares. This scheme provides access to data-blocks even when subsets of the storage-nodes have failed.

To provide reasonable semantics, a storage system must guarantee that readers see consistent data-block
values. Specifically, the linearizability [Herlihy90] of operations is desirable for a shared storage system.
The early PASIS prototypes required that clients coordinate concurrent accesses explicitly (e.g., via
locking, as would occur in a distributed database system).

Within the context of PASIS, an initial exploration was begun into the viability of using versioning
storage-nodes [Strunk00, Soules02] as a foundation for efficient consistency, even with concurrent
readers and writers. As described in Section 2.1.1, if each storage-node keeps all versions of its data-
blocks, it becomes possible to achieve useful consistency semantics, and to do so without excess
communication or I/O in the common cases of non-failed clients and minimal write sharing. Such
versioning is also useful in storage systems because it simplifies several aspects of data protection,
including recovery from user mistakes [Santry99], recovery from system failure [Hitz94], and survival of
client compromises [Strunk00]. Further, it can be implemented with minimal performance cost (≈ 2%)
[Strunk00] and capacity demand (≈ 10%) [Soules02].

Our early results suggested great promise in the approach, and led to development and further exploration
in combination with the Byzantine quorum concept introduced by Fleet.

Fleet: Fleet is a distributed object system funded through DARPA ATO. (The funding for this project
ended in June 2004.) Fleet provides the capability to transform an arbitrary serializable Java object into a
remote one that lives beyond the JVM in which it was created, and that can be invoked by clients outside
that JVM. In the process of making the object remote, Fleet distributes the object to multiple different
servers; we call this a distributed object. By default, these replicas of a distributed object are managed
through a quorum-based method invocation protocol that enforces linearizability while masking the
Byzantine failure of a limited number of object replicas [Chockler01].

The architecture of a distributed object in Fleet is essentially that shown in Figure 2.3(a). When an object
is distributed, it is replaced in its creating JVM by a handle for the object that implements the same
interface as the original object. The replicas are instantiated on the remote servers. Subsequent method
invocations on the handle are converted into method invocations on a quorum of replicas, managed

WRITE(D) READ(D)

Client A

Client B

Storage-nodes

 13

(again, by default) via a method invocation protocol [Chockler01]. In addition, other clients can
instantiate handles for this object, either by discovering its replicas at the servers and instantiating a
handle for it, or being passed a handle explicitly. However, the original version of Fleet does not support
nested objects and nested method invocations [Malkhi01], and as such does not accommodate
circumstances as depicted in Figure 2.3(b). In particular, the default method invocation protocol of Fleet
[Chockler01] does not accommodate corrupt clients, and we are aware of no quorum-based protocol that
does so. We filled this gap in the proposed work.

2.1.3 Comparison with Pre-Existing Technology
Most prior systems implementing Byzantine fault-tolerant services adopt the state machine approach (for
a tutorial, see [Schneider90]), whereby all operations are processed by server replicas in the same order
(atomic broadcast). While this approach supports a linearizable, Byzantine fault-tolerant implementation
of any deterministic object, it has a number of limitations that we strive to overcome in this proposed
work. First and foremost, it scales poorly both in the number of client requests and in the number of
servers. It scales poorly in the number of client requests because it does not offer opportunities for load
dispersion among servers; all servers process every request. It scales poorly in the number of servers
because adding more servers increases the number of servers among which ordering must occur.

A second limitation of state machine replication, when considering it to support read-write data storage, is
that it cannot provide a wait-free service. That is, due to its generality, state machine replication is
constrained by fundamental impossibility results [Fischer85, Herlihy91, Jayanti98] that prohibit this
strong liveness property, even though the requirements of read-write storage do not mandate this
limitation. Instead, such systems achieve liveness only under stronger timing assumptions, such as
synchrony (e.g., [Pittelli89, Shrivastava92, Cristian95]) or partial synchrony [Dwork88] (e.g., [Reiter94,
Kihlstrom01, Castro02]), or probabilistically (e.g., [Cachin01]). That is, the generality of state machine
replication is, in fact, detrimental to the correctness properties that can be offered for read-write storage,
by inducing additional assumptions to gain liveness. This is a second good reason to depart from state
machine replication where possible.

As we have discussed, a more scalable alternative to replicated state machines is Byzantine quorum
systems [Malkhi98a]. Protocols for supporting a linearizable implementation of any deterministic object
using Byzantine quorums have been developed (e.g., [Chockler01]), but also necessarily forsake wait-
freedom to do so. For the specific case of read-write data, Byzantine fault-tolerant protocols for
implementing read-write access using quorums are described in [Herlihy87, Malkhi98b, Pierce01,
Martin02]. Of these, only [Martin02] achieves linearizability in our fault model, and this work is also
closest to ours in that it uses a variation on versioning (very abstractly, where clients listen for future
versions, as opposed to read past versions as we propose here). More significantly, however, in our fault
model, specifically including faulty clients, [Martin02] has the disadvantages that it does not work for
erasure-coded data; (ii) it suffers the exchange of n2 messages among the n servers per write, and so does
not scale well; and (iii) it requires significant computation by requiring digital signatures by clients. As
such, it leaves very significant room for improvement; we will achieve that improvement.

We contrast our use of versioning for concurrency control with systems in which each write creates a
new, immutable version of a data item to which subsequent reads are directed (e.g., [Reed80, Reed83,
Mullender85]). This approach shifted the concurrency control problem to the metadata mechanism that
resolves the data-item name to a version. So, systems that employ this approach (e.g., Past [Rowstron01],
CFS [Dabek01], Farsite [Adya02] and the archival portion of Oceanstore [Kubiatowicz00]) require a
separate concurrency control mechanism to manage this metadata (e.g., state machine replication, as
implemented in BFT [Castro02] in the case of Farsite and Oceanstore).

The only prior system of which we are aware that supported embedded, distributed objects, and nested
invocations by one object on another, in an intrusion-tolerant way is our own Immune system

 14

[Narasimhan99]. However, this approach utilized state machine replication to implement objects
generically, and so suffers from the same scaling problems detailed above. As described in Section 2.1.1,
we dramatically advanced the scalability of this class of system, but faced a number of challenges in
doing so as we moved to a quorum-based and potentially version-based approach. The payoff, of course,
is a dramatically more scalable basis for building services of almost unlimited types.

 15

3 THE READ WRITE CONSISTENCY PROTOCOL AND LAZY VERIFICATION IN
BYZANTINE FAULT-TOLERANT DISTRIBUTED STORAGE SYSTEMS

3.1 Introduction
Survivable storage systems spread data redundantly across a set of distributed storage-nodes in an effort
to ensure its availability despite the failure or compromise of storage-nodes. Some systems support only
replication, while others also use more space-efficient (and network-efficient) erasure-coding approaches
in which a fragment, which is smaller than a full copy, is stored at each storage-node. Client read and
write operations interact with multiple storage-nodes, according to some consistency protocol, to
implement consistency in the face of client and storage-node faults and concurrent operations.

This chapter describes and evaluates a new consistency protocol that operates in an asynchronous
environment and tolerates Byzantine failures of clients and storage-nodes. It then goes on to introduce
lazy verification and describe implementation techniques for exploiting its potential. Lazy verification
enables the system to amortize verification effort over multiple operations, to perform verification during
otherwise idle time, and to have only a sub-set of storage-nodes perform verification.

3.1.1 The Consistency Protocol

The consistency protocol supports a hybrid failure model in which up to t storage-nodes may fail: b ≤ t of
these failures can be Byzantine and the remainder can be crash. The protocol also supports the use of m-
of-n erasure codes (i.e., m-of-n fragments are needed to reconstruct the data), which usually require less
network bandwidth (and storage space) than full replication.

Briefly, the protocol works as follows. To perform a write, a client erasure codes a data-item into a set of
fragments, determines the current logical time and then writes the time-stamped fragments to at least a
threshold set of storage-nodes. Storage-nodes keep all versions of the fragments they are sent (in practice,
until garbage collection frees them). To perform a read, a client fetches the latest fragment versions from
a subset of storage-nodes and determines whether they comprise a completed write; usually, they do. If
they do not, additional and historical fragments are fetched, and repair may be performed, until a
completed write is observed. The fragments are then decoded and the data-item is returned.

The protocol gains efficiency from five features. First, it supports the use of space-efficient m-of-n
erasure codes that can substantially reduce communication overheads. Second, most read operations
complete in a single round trip: reads that observe write concurrency or failures (of storage-nodes or a
client write) may incur additional work. Most studies of distributed storage systems (e.g., [Baker91,
Noble94]) indicate that concurrency is uncommon (i.e., writer-writer and writer-reader sharing occurs in
well under 1% of operations). Failures, although tolerated, ought to be rare. Third, incomplete writes are
replaced by subsequent writes or reads (that perform repair), thus preventing future reads from incurring
any additional cost; when subsequent writes do the fixing, additional overheads are never incurred.
Fourth, most protocol processing is performed by clients, increasing scalability via the well-known
principle of shifting work from servers to clients [Howard88]. Fifth, the protocol only requires the use of
cryptographic hashes, rather than more expensive digital signatures.

Following sections describe the protocol in detail and develop bounds for thresholds in terms of the
number of failures tolerated (i.e., the protocol requires at least 2t+2b+1 storage-nodes). Also described
and evaluated is its use in a prototype storage system called PASIS [Wylie00]. To demonstrate that our
protocol is efficient in practice, we compare its performance to BFT [Castro01, Castro02], the Byzantine
fault-tolerant replicated state machine implementation that Castro and Rodrigues have made available
[Castro]. Experiments show that PASIS scales better than BFT in terms of server network utilization and
in terms of work performed by the server. Experiments also show that response times of BFT (using
multicast) and PASIS are comparable.

 16

This protocol is timely because many research storage systems are investigating practical means of
achieving high fault tolerance and scalability of which some are considering the support of erasure-coded
data (e.g., [Frolund03, Ganger03, Kubiatowicz00, Morris02]). Our protocol for Byzantine-tolerant
erasure-coded storage can provide an efficient, scalable, highly fault-tolerant foundation for such storage
systems.

3.1.2 Lazy Verification
Sections 3.7 through 3.11 of this chapter describe a read/write consistency protocol that uses versioning
storage to avoid proactive write-time verification. Rather than verification occurring during every write
operation, it is performed by clients during read operations. Read-time verification eliminates the work
for writes that become obsolete before being read, such as occurs when the data is deleted or overwritten.
Such data obsolescence is quite common in storage systems with large client caches, as most reads are
satisfied by the cache but writes must be sent to storage-nodes to survive failures. One major downside to
read-time verification, however, is the potentially unbounded cost: a client may have to sift through many
ill-formed or incomplete write values. A Byzantine client could degrade service by submitting large
numbers of bad values. A second practical issue is that our particular approach to verification for erasure-
coding, called validating timestamps, requires a computation cost equivalent to fragment generation on
every read.

Lazy verification operates by having the storage-nodes perform verification in the background. It avoids
verification for data that has a short lifetime and is never read. In addition, it allows verification to occur
during otherwise idle periods, which can eliminate all verification overhead in the common cases. Clients
will only wait for verification if they read a data-item before verification of the most recent write
operation to it completes. Our lazy verification implementation limits the number of unverified write
operations in the system and, thus, the number of retrievals that a reader must perform to complete a read.
When the limit on unverified writes is reached, each write operation must be verified until the storage-
nodes restore some slack. Limits are tracked on a per-client basis, a per-data-item basis, and on a storage-
node basis (locally).

Combined, the different limits can mitigate the impact of Byzantine clients (individually and collectively)
while minimizing the impact on correct clients. In the worst case, a collection of Byzantine clients can
force the system to perform verification on every write operation, which is the normal-case operation for
most other protocols.

This section describes and evaluates the design and implementation of lazy verification in the PASIS
storage system [Goodson04a]. Several techniques are introduced for reducing the impact of verification
on client reads and writes, as well as bounding the read-time delay that faulty clients can insert into the
system. For example, a subset of updated storage-nodes can verify a write operation and notify the others,
reducing the communication complexity from O(N2) to O(bN) in a system of N storage-nodes tolerating b
Byzantine failures; this reduces the number of messages by 33% even in the minimal system
configuration. Appropriate scheduling allows verification to complete in the background. Indeed, in
workloads with idle periods, the cost of verification is hidden from both the client read and write
operations. Appropriate selection of updates to verify can maximize the number of verifications avoided
(for writes that become obsolete). The overall effect is that, even in workloads without idle periods, the
lazy verification techniques implemented provide over a factor of four higher write throughput when
compared to a conventional approach that proactively performs verification at write-time.

3.2 Efficient Byzantine-tolerant Erasure-coded Storage: Background
In a fault-tolerant, or survivable, distributed storage system, clients write and (usually) read data from
multiple storage-nodes. This scheme provides access to data-items even when subsets of the storage-
nodes have failed. One difficulty created by this architecture is the need for a consistent view, across
storage-nodes, of the most recent update. Without such consistency, data loss is possible. To provide

 17

reasonable semantics, storage systems must guarantee that readers see consistent data-item values.
Specifically, the linearizability [Herlihy90] of operations is desirable for a shared storage system.

A common data distribution scheme used in such systems is replication. Since each storage-node has a
complete instance of the data-item, the main difficulty is identifying and retaining the most recent
instance. Alternately, more space-efficient erasure coding schemes can be used to reduce network load
and storage consumption. With erasure coding schemes, reads require fragments from multiple servers.
Moreover, to decode the data-item, the set of fragments read must correspond to the same write operation.

Most prior systems implementing Byzantine fault tolerant services adopt the replicated state machine
approach [Schneider90], whereby all operations are processed by server replicas in the same order
(atomic broadcast). While this approach supports a linearizable, Byzantine fault-tolerant implementation
of any deterministic object, such an approach cannot be wait-free [Fischer85, Herlihy91, Jayanti98].
Instead, such systems achieve liveness only under stronger timing assumptions. An alternative to state
machine replication is a Byzantine quorum system [Malkhi97], from which our protocol inherits
techniques (i.e., our protocol can be considered a Byzantine quorum system that uses the threshold
quorum construction). Protocols for supporting a linearizable implementation of any deterministic object
using Byzantine quorums have been developed (e.g., [Malkhi01]), but also necessarily forsake wait-
freedom to do so. Additionally, most protocols accessing Byzantine quorum systems utilize
computationally expensive digital signatures.

Byzantine fault-tolerant protocols for implementing read-write objects using quorums are described in
[Herlihy87, Malkhi97, Martin02]. In our protocol, a reader may retrieve fragments for several versions of
the data-item in the course of identifying the return value of a read. Similarly, readers in [Martin02]
“listen” for updates (versions) from storage-nodes until a complete write is observed. Conceptually, our
approach differs in that clients read past versions, versus listening for future versions broadcast by
servers. In our fault model, especially in consideration of faulty clients, our protocol has several
advantages. First, our protocol works for erasure-coded data, whereas extending [Martin02] to erasure
coded data appears nontrivial. Second, ours provides better message efficiency. Third, ours requires less
computation, in that we do not require the use of expensive digital signatures. Advantages of [Martin02]
are that it tolerates a higher fraction of faulty servers than our protocol, and does not require servers to
store a potentially unbounded number of data-item versions. Our prior analysis of versioning storage,
however, suggests that the latter is a non-issue in practice [Strunk00], and even under attack this can be
managed using the garbage collection mechanism we describe in Section 3.5.1.1.

3.3 System Model
We describe the system infrastructure in terms of clients and storage-nodes. There are N storage-nodes
and an arbitrary number of clients in the system. A client or storage-node is correct in an execution if it
satisfies its specification throughout the execution. A client or storage-node that deviates from its
specification fails. We assume a hybrid failure model for storage-nodes. Up to t storage-nodes may fail, b
≤ t of which may be Byzantine faults [Lamport82]; the remainder are assumed to crash. We make no
assumptions about the behavior of Byzantine storage-nodes and Byzantine clients. A client or storage-
node that does not exhibit a Byzantine failure (it is either correct or crashes) is benign.

Our protocol tolerates Byzantine faults in any number of clients and a limited number of storage nodes
while implementing linearizable and wait-free read-write objects. Linearizability is adapted appropriately
for Byzantine clients (we discuss the necessary adaptations in [Goodson04b]). Wait-freedom functions as
in the model of Jayanti et al. [Jayanti98] and assumes no storage exhaustion.

The protocol tolerates crash and Byzantine clients. As in any practical storage system, an authorized
Byzantine client can write arbitrary values to storage, which affects the value of the data, but not its

 18

consistency. We assume that Byzantine clients and storage-nodes are computationally bounded so that we
can benefit from cryptographic primitives.

We assume an asynchronous model of time (i.e., we make no assumptions about message transmission
delays or the execution rates of clients and storage-nodes, except that it is non-zero). We assume that
communication between a client and a storage-node is point-to-point, reliable, and authenticated: a correct
storage-node (client) receives a message from a correct client (storage-node) if and only if that client
(storage-node) sent it.

There are two types of operations in the protocol — read operations and write operations — both of
which operate on data-items. Clients perform read/write operations that issue multiple read/write requests
to storage-nodes. A read/write request operates on a data-fragment. A data-item is encoded into data-
fragments. Clients may encode data items in an erasure-tolerant manner; thus the distinction between
data-items and data-fragments. Requests are executed by storage-nodes; a correct storage-node that
executes a write request hosts that write operation.

Storage-nodes provide fine-grained versioning; correct storage-nodes host a version of the data-fragment
for each write request they execute. There is a well known zero time, 0, and null value, ⊥, which storage-
nodes can return in response to read requests. Implicitly, all stored data is initialized to ⊥ at time 0.

3.4 Byzantine Fault-tolerant Consistency Protocol
This section describes our Byzantine fault-tolerant consistency protocol, which efficiently supports
erasure-coded data-items by taking advantage of versioning storage-nodes. It presents the mechanisms
employed to encode and decode data, and to protect data integrity from Byzantine storage nodes and
clients. It then describes, in detail, the protocol in pseudo-code form. Finally, it develops constraints on
protocol parameters to ensure linearizability and wait-freedom.

3.4.1 Overview
At a high level, the protocol proceeds as follows. Logical timestamps are used to totally order all write
operations and to identify data-fragments pertaining to the same write operation across the set of storage-
nodes. Data-fragments are generated by erasure-coding data-items. For each write, a logical timestamp is
constructed by the client that is guaranteed to be unique and greater than that of the latest complete write
(the complete write with the highest timestamp). This is accomplished by querying storage-nodes for the
greatest timestamp they host, and then incrementing the greatest response. In order to verify the integrity
of the data, a hash that can verify data-fragment correctness is appended to the logical timestamp.

To perform a read operation, clients issue read requests to a subset of storage-nodes. Once at least a read
threshold of storage-nodes reply, the client identifies the candidate—the response with the greatest logical
timestamp. The set of read responses that share the timestamp of the candidate comprise the candidate
set. The read operation classifies the candidate as complete, repairable, or incomplete. If the candidate is
classified as complete, the data-fragments, timestamp, and return value are validated. If validation is
successful, the candidate’s value is decoded and returned; the read operation is complete. Otherwise, the
candidate is reclassified as incomplete. If the candidate is classified as repairable, it is repaired by writing
data-fragments back to the original set of storage-nodes. Prior to performing repair, data-fragments are
validated in the same manner as for a complete candidate. If the candidate is classified as incomplete, the
candidate is discarded, previous data-fragment versions are requested, and classification begins anew. All
candidates fall into one of the three classifications, even those corresponding to concurrent or failed write
operations.

3.4.2 Mechanisms
Several mechanisms are used in our protocol to achieve linearizability in the presence of Byzantine faults.

 19

3.4.2.1 Erasure Codes
We use threshold erasure coding schemes, in which N data-fragments are generated during a write (one
for each storage-node), and any m of those data-fragments can be used to decode the original data-item.
Moreover, any m of the data-fragments can deterministically generate the other N – m data-fragments.

3.4.2.2 Data-fragment Integrity
Byzantine storage-nodes can corrupt their data-fragments. As such, it must be possible to detect and mask
up to b storage-node integrity faults.

Cross checksums: Cross checksums [Gong89] are used to detect corrupt data-fragments. A cryptographic
hash of each data-fragment is computed. The set of N hashes are concatenated to form the cross checksum
of the data-item. The cross checksum is stored with each data-fragment (i.e., it is replicated N times).
Cross checksums enable read operations to detect data-fragments that have been modified by storage-
nodes.

3.4.2.3 Write Operation Integrity
Mechanisms are required to prevent Byzantine clients from performing a write operation that lacks
integrity. If a Byzantine client generates random data-fragments (rather than erasure coding a data-item
correctly), then each of the ()

m

N permutations of data-fragments could “recover” a distinct data-item. These

attacks are similar to poisonous writes for replication as described by Martin et al. [Martin02]. To protect
against Byzantine clients, the protocol must ensure that read operations only return values that are written
correctly (i.e., that are single-valued). To achieve this, the cross checksum mechanism is extended in three
ways: validating timestamps, storage-node verification, and validated cross checksums.

Validating timestamps: To ensure that only a single set of data-fragments can be written at any logical
time, the hash of the cross checksum is placed in the low order bits of the logical timestamp. Note, the
hash is used for space-efficiency; instead, the entire cross checksum could be placed in the low bits of the
timestamp.

Storage-node verification: On a write, each storage-node verifies its data-fragment against its hash in the
cross checksum. The storage-node also verifies the cross checksum against the hash in the timestamp. A
correct storage-node only executes write requests for which both checks pass. Via this approach, a
Byzantine client cannot make a correct storage-node appear Byzantine. It follows that only Byzantine
storage-nodes can return data-fragments that do not verify against the cross checksum.

Validated cross checksums: To ensure that the client that performed a write operation acted correctly,
the reader must validate the cross checksum. To validate the cross checksum, all N data-fragments are
required. Given any m data-fragments, the full set of N data-fragments a correct client should have written
can be generated. The “correct” cross checksum can then be computed from the regenerated set of data-
fragments. If the generated cross checksum does not match the verified cross checksum, then a Byzantine
client performed the write operation. Only a single-valued write operation can generate a cross checksum
that verifies against the validating timestamp.

3.4.2.4 Authentication
Clients and storage-nodes must be able to validate the authenticity of messages. We use an authentication
scheme based on pair-wise shared secrets (e.g., between clients and storage-nodes), in which RPC
arguments and replies are accompanied by an HMAC [Bellare96] (using the shared secret as the key). We
assume an infrastructure is in place to distribute shared secrets. Our implementation uses an existing
Kerberos [Steiner88] infrastructure.

 20

3.4.3 Pseudo-code
The pseudo-code for the protocol is shown in
Figures 3.1 and 3.2. The symbol LT denotes logical
time and LTcandidate denotes the logical time of the
candidate. The set {D1, … , DN} denotes the N data-
fragments; likewise, {S1, … , SN} denotes the set of
N storage-nodes. In the pseudo-code, the binary
operator ‘|’ denotes string concatenation. Simplicity
and clarity in the presentation of the pseudo-code
was chosen over obvious optimizations that are in
the actual implementation.

3.4.3.1 Storage-node Interface
Storage-nodes offer interfaces to: write a data-
fragment with a specific logical time (WRITE);
query the greatest logical time of a hosted data
fragment (TIME_REQUEST); read the hosted data-
fragment with the greatest logical time
(READ_LATEST); and read the hosted data-
fragment with the greatest logical time at or before
some logical time (READ_PREV). Due to its
simplicity, storage-node pseudo-code is omitted.

3.4.3.2 Write Operation
The WRITE operation consists of determining the

greatest logical timestamp, constructing write
requests, and issuing the requests to the storage-
nodes. First, a timestamp greater than, or equal to,
that of the latest complete write must be determined. Collecting N – t responses, on line 7 of
READ_TIMESTAMP, ensures that the response set intersects a complete write at a correct storage-node.
In practice, the timestamp of the latest complete write can be observed with fewer responses.

Next, the ENCODE function, on line 2 of WRITE, encodes the data-item into N data-fragments. The data-
fragments are used to construct a cross checksum from the concatenation of the hash of each data-
fragment (line 3). The function MAKE_TIMESTAMP, called on line 4, generates a logical timestamp to be
used for the current write operation. This is done by incrementing the high order bits of the greatest
observed logical timestamp from the ResponseSet (i.e., LT:TIME) and appending the Verifier. The
Verifier is just the hash of the cross checksum.

Finally, write requests are issued to all storage-nodes. Each storage-node is sent a specific data-fragment,
the logical timestamp, and the cross checksum. A storage-node validates the cross checksum with the
verifier and validates the data-fragment with the cross checksum before executing a write request (i.e.,
storage-nodes call VALIDATE listed in the read operation pseudo-code). The write operation returns to
the issuing client once WRITE_RESPONSE messages are received from N – t storage-nodes (line 7 of
DO_WRITE). Since the environment is asynchronous, a client can wait for no more than N – t responses.
The function UNIQUE_SERVERS determines how many unique servers are present in the candidate set;
it ensures that only a single response from each Byzantine storage-node is counted.

Figure 3.1: Write operation pseudo-code.

WRITE(Data) :
1: Time:= READ_TIMESTAMP()
2: {D1, . . . ,DN}:= ENCODE(Data)
3: CC := MAKE_CROSS_CHECKSUM({D1, . . . ,DN})
4: LT := MAKE_TIMESTAMP(Time, CC)
5: DO_WRITE({D1, . . . ,DN}, LT, CC)

READ_TIMESTAMP() :
1: for all Si ∈ {S1, . . . ,SN} do
2: SEND(Si , TIME_REQUEST)
3: end for
4: ResponseSet := Ø
5: repeat
6: ResponseSet := ResponseSet ∪ RECEIVE(S, TIME_RESPONSE)
7: until (UNIQUE_SERVERS(ResponseSet) = N - t)
8: Time := MAX[ResponseSet.LT.Time]
9: RETURN(Time)

MAKE_CROSS_CHECKSUM({D1, . . . ,DN}) :
1: for all Di ∈ {D1, . . . ,DN} do
2: Hi := HASH(Di)
3: end for
4: CC := H1| . . . |HN
5: RETURN(CC)

MAKE_TIMESTAMP(LTmax, CC) :
1: LT:Time := LTmax@Time + 1
2: LT:Verifier := HASH(CC)
3: RETURN(LT)

DO_WRITE({D1, . . . ,DN}, LT, CC) :
1: for all Si ∈ {S1, . . . ,SN} do
2: SEND(Si, WRITE_REQUEST, LT, Di, CC)
3: end for
4: ResponseSet := Ø
5: repeat
6: ResponseSet := ResponseSet ∪ RECEIVE(S, WRITE_RESPONSE)
7: until (UNIQUE_SERVERS(ResponseSet) = N - t)

 21

READ() :
1: ResponseSet := DO_READ(READ_LATEST_REQUEST, ?)
2: loop
3: 〈CandidateSet, LTcandidate〉 :=

CHOOSE_CANDIDATE(ResponseSet)
4: if (|CandidateSet| ≥ INCOMPLETE then
5: /* Complete or repairable write found */
6: {D1, . . . ,DN} := GENERATE_FRAGMENTS(CandidateSet)
7: CCvalid := MAKE_CROSS_CHECKSUM({D1, . . . ,DN})
8: if (CCvalid = CandidateSet.CC) then
9: /* Cross checksum is validated */
10: if (|CandidateSet| < COMPLETE) then
11: /* Repair is necessary */
12: DO_WRITE({D1, . . . ,DN}, LTcandidate, CCvalid)
13: end if
14: Data := DECODE({D1, . . . ,DN})
15: RETURN(Data)
16: end if
17: end if
18: /* Incomplete or cross checksum did not validate, loop again */
19: ResponseSet := DO_READ(READ_PREV_REQUEST, LTcandidate)
20: end loop

DO READ(READ COMMAND, LT) :
1: for all Si ∈ {S1, . . . ,SN} do
2: SEND(Si, READ_COMMAND, LT)
3: end for
4: ResponseSet := Ø
5: repeat
6: Resp := RECEIVE(S, READ_RESPONSE)
7: if (VALIDATE(Resp.D, Resp.CC, Resp.LT, S) = TRUE) then
8: ResponseSet := ResponseSet ∪ Resp
9: end if
10: until (UNIQUE_SERVERS(ResponseSet) = N - t)
11: RETURN(ResponseSet)

VALIDATE(D, CC, LT, S) :
1: if ((HASH(CC) ≠ LT.Verifier) OR (HASH(D) ≠ CC[S])) then
2: RETURN(FALSE)
3: end if
4: RETURN(TRUE)

3.4.3.3 Read Operation
The read operation iteratively identifies and classifies
candidates, until a repairable or complete candidate is
found. Once a repairable or complete candidate is
found, the read operation validates its correctness and
returns the data.

The read operation begins by issuing READ_LATEST
requests to all storage-nodes (via the DO_READ
function). Each storage-node responds with the data-
fragment, logical timestamp, and cross checksum
corresponding to the greatest timestamp it has
executed. The integrity of each response is
individually validated through the VALIDATE
function, called on line 7 of DO_READ. This function
checks the cross checksum against the Verifier found
in the logical timestamp and the data-fragment against
the appropriate hash in the cross checksum. Although
not shown in the pseudocode, the client only
considers responses from storage nodes to
READ_PREV requests that have timestamps strictly
less than that given in the request.

Since, in an asynchronous system, slow storage-nodes
cannot be differentiated from crashed storage-nodes,
only N – t read responses can be collected (line 10 of
DO_READ). Since correct storage-nodes perform the
same validation before executing write requests, the
only responses that can fail the client’s validation are
those from Byzantine storage-nodes. For every
discarded Byzantine storage-node response, an
additional response can be awaited.

After sufficient responses have been received, a candidate for classification is chosen. The function
CHOOSE_CANDIDATE, called on line 3 of READ, determines the candidate timestamp, denoted LTcandidate,
which is the greatest timestamp found in the response set. All data-fragments that share LTcandidate are
identified and returned as the CandidateSet. The candidate set contains a set of validated data-fragments
that share a common cross checksum and logical timestamp.

Once a candidate has been chosen, it is classified as complete, repairable, or incomplete based on the size
of the candidate set. The definitions of INCOMPLETE and COMPLETE are given in the following
subsection. If the candidate is classified as incomplete, a READ_PREV request is sent to each storage-
node with its timestamp. Candidate classification begins again with the new response set. If the candidate
is classified as either complete or repairable, the candidate set contains sufficient data fragments written
by the client to decode the original data-item. To validate the observed write’s integrity, the candidate set
is used to generate a new set of data-fragments (line 6 of READ). A validated cross checksum, CCvalid, is
computed from the generated data-fragments. The validated cross checksum is compared to the cross
checksum of the candidate set (line 8 of READ). If the check fails, the candidate was written by a
Byzantine client; the candidate is then reclassified as incomplete and the read operation continues.

Figure 3.2: Read operation pseudo-code

 22

If the check succeeds, the candidate was written by a correct client and the read enters its final phase.
Note that for a candidate set classified as complete this check either succeeds or fails for all correct clients
regardless of which storage-nodes are represented within the candidate set.

If necessary, repair is performed: write requests are issued with the generated data-fragments, the
validated cross checksum, and the logical timestamp (line 10 of READ). Storage-nodes not hosting the
write execute the write at the given logical time; those already hosting the write are safe to ignore it.
Finally, the function DECODE, on line 14 of READ, decodes m data-fragments, returning the data-item.

3.4.4 Protocol Constraints
The symbol QC denotes a complete write operation: the threshold number of benign storage-nodes that
must execute write requests for a write operation to be complete. To ensure that linearizability and wait-
freedom are achieved, QC and N must be constrained with regard to b, t, and each other. As well, the
parameter m, used in DECODE, must be constrained. We present safety and liveness proofs for the
protocol and discuss the concept of linearizability in the presence of Byzantine clients in [Goodson04b].

Write completion: To ensure that a correct client can complete a write operation,

QC ≤ N – t – b. (3.1)

Since slow storage-nodes cannot be differentiated from crashed storage-nodes, only N – t responses can
be awaited. As well, up to b responses received may be from Byzantine storage-nodes.

Read classification: To classify a candidate as complete, a candidate set of at least QC benign storage-
nodes must be observed. In the worst case, at most b members of the candidate set may be Byzantine,
thus,

|CandidateSet| – b – QC , so COMPLETE = QC + b. (3.2)

To classify a candidate as incomplete a client must determine that a complete write does not exist in the
system (i.e., fewer than QC benign storage-nodes host the write). For this to be the case, the client must
have queried all possible storage-nodes (N_t), and must assume that nodes not queried host the candidate
in consideration. So,

|CandidateSet| + t < QC , so INCOMPLETE = QC – t. (3.3)

Real repairable candidates: To ensure that Byzantine storage-nodes cannot fabricate a repairable
candidate, a candidate set of size b must be classifiable as incomplete. Substituting b into (3),

b + t < QC.. (3.4)

Decodable repairable candidates: Any repairable candidate must be decodable. The lower bound on
candidate sets that are repairable follows from (3) (since the upper bound on classifying a candidate as
incomplete coincides with the lower bound on repairable):

1 ≤ m ≤ QC – t. (3.5)

Constraint summary:

.1
;122

;1

tQm
Nbt

btNQbt

C

C

−≤≤
≤++

−−≤≤++

 23

3.5 Evaluation
This section evaluates the performance and scalability of the consistency protocol in the context of a
prototype storage system called PASIS [Wylie00]. We compare the PASIS implementation of our
protocol with the BFT library implementation [Castro] of Byzantine fault-tolerant replicated state
machines [Castro02], since it is generally regarded as efficient.

3.5.1 PASIS Implementation
PASIS consists of clients and storage-nodes. Storage nodes store data-fragments and their versions.
Clients execute the protocol to read and write data-items.

3.5.1.1 Storage-node Implementation
PASIS storage nodes use the Comprehensive Versioning File System (CVFS) [Soules03] to retain data-
fragments and their versions. CVFS uses a log-structured data organization to reduce the cost of data
versioning. Experience indicates that retaining every version and performing local garbage collection
comes with minimal performance cost (a few percent) and that it is feasible to retain complete version
histories for several days [Soules03, Strunk00].

We extended CVFS to provide an interface for retrieving the logical timestamp of a data-fragment. Each
write request contains a data-fragment, a logical timestamp, and a cross checksum. To improve
performance, read responses contain a limited version history containing logical timestamps of previously
executed write requests. The version history allows clients to identify and classify additional candidates
without issuing extra read requests. Storage-nodes can also return read responses that contain no data
other than version histories, which makes candidate classification more network-efficient.

Pruning old versions, or garbage collection, is necessary to prevent capacity exhaustion of storage-nodes.
A storage node in isolation, by the nature of the protocol, cannot determine which local data-fragment
versions are safe to remove. An individual storage-node can garbage collect a data-fragment version if
there exists a later complete write for the corresponding data-item. Storage-nodes are able to classify
writes by executing the read consistency protocol in the same manner as the client. We discuss garbage
collection more fully in [Goodson03].

3.5.1.2 Client Implementation
The client module provides a block-level interface to higher level software, and uses a simple RPC
interface to communicate with storage-nodes. The RPC mechanism uses TCP/IP. The client module is
responsible for the execution of the consistency protocol.

Initially, read requests are issued to QC + b storage nodes. PASIS utilizes read witnesses to make read
operations more network efficient; only m of the initial requests request the data-fragment, while all
request version histories. If the read responses do not yield a candidate that is classified as complete, read
requests are issued to the remaining storage-nodes (and a total of up to N – t responses are awaited). If the
initial candidate is classified as incomplete, subsequent rounds of read requests fetch only version
histories until a candidate is classified as either repairable or complete. If necessary, after classification,
extra data fragments are fetched according to the candidate timestamp. Once the data-item is successfully
validated and decoded, it is returned to the client.

3.5.1.3 Mechanism Implementation
We measure the space-efficiency of an erasure code in terms of blowup—the total amount of data stored
over the size of the data-item. We use an information dispersal algorithm [Rabin89], which has a blowup
of m

N . Our information dispersal implementation stripes the data-item across the first m data-fragments

(i.e., each data-fragment is m
1 of the original data-item’s size). These stripe-fragments are used to

 24

generate the code-fragments via polynomial interpolation within a Galois Field. Our implementation of
polynomial interpolation was originally based on publicly available code [Dai-a] for information dispersal
[Rabin89]. We modified the source to make use of stripe-fragments and added an implementation of
Galois Fields of size 28 that use lookup tables for multiplication. Our implementation of cross checksums
closely follows [Gong89]. We use MD5 for all hashes; thus, each cross checksum is N × 16 bytes long.
Note, that if very small blocks are used with a large N, then the overhead due to size of the cross
checksum could be substantial.

3.5.2 Experimental Setup
We use a cluster of 20 machines to perform our experiments. Each machine is a dual 1 GHz Pentium III
machine with 384 MB of memory. Storage-nodes use a 9 GB Quantum Atlas 10K as the storage device.
The machines are connected through a 100 Mb switch. All machines run the Linux 2.4.20 SMP kernel. In
all experiments, clients keep a single read or write operation for a random 16 KB block outstanding. Once
an operation completes, a new operation is issued (there is no think time). For all experiments, the
working set fits into memory and all caches are warmed up beforehand.

3.5.2.1 PASIS Configuration
Each storage-node is configured with 128 MB of data cache, and no caching is done on the clients. All
experiments show results using write-back caching at the storage nodes, mimicking availability of 16 MB
of non-volatile RAM. This allows us to focus experiments on the overheads introduced by the protocol
and not those introduced by the disk subsystem. All messages are authenticated using HMACs; pair-wise
symmetric keys are distributed prior to each experiment.

3.5.2.2 BFT configuration
Operations in BFT [Castro02] require agreement among the replicas (storage-nodes in PASIS). BFT
requires N = 3b + 1 replicas to achieve agreement. Agreement is performed in four steps: (i) the client
broadcasts requests to all replicas; (ii) the primary broadcasts pre-prepare messages to all replicas; (iii) all
replicas broadcast prepare messages to all replicas; and, (iv) all replicas send replies back to the client and
then broadcast commit messages to all other replicas. Commit messages are piggybacked on the next pre-
prepare or prepare message to reduce the number of messages on the network. Authenticators, lists of
MACs, are used to ensure that broadcast messages from clients and replicas cannot be modified by a
Byzantine replica. All clients and replicas have public and private keys that enable them to exchange
symmetric cryptographic keys used to create MACs. Logs of commit messages are checkpointed (garbage
collected) periodically.

An optimistic fast path for read-only operations is implemented in BFT. The client broadcasts its request
to all replicas. Each replica replies once all previous requests have committed. Only one replica sends the
full reply (i.e., the data and digest), and the remainder just send digests that can verify the correctness of
the data returned. If the replies from replicas do not agree, the client re-issues the read operation. Re-
issued read operations perform agreement using the base BFT algorithm.

The BFT configuration does not store data to disk; instead it stores all data in memory and accesses it via
memory offsets. For all experiments, BFT view changes are suppressed. BFT uses UDP rather than TCP.
The BFT implementation defaults to using IP multicast. In our environment, like many, IP multicast
broadcasts to the entire subnet, thus making it unsuitable for shared environments. We found that the BFT
implementation code is fairly fragile when using IP multicast in our environment, making it necessary to
disable IP multicast in some cases (where stated explicitly). The BFT implementation authenticates
broadcast messages via authenticators, and point-to-point messages with MACs.

 25

3.5.3 Mechanism Costs
Client and storage-node computation costs for operations on a 16 KB block in PASIS are listed in Table
3.1. For every read and write operation, clients perform erasure coding (i.e., they compute N – m data-
fragments given m data-fragments), generate a cross checksum, and generate a verifier. Recall that writes
generate the first m data fragments by striping the data-item into m fragments. Similarly, reads must
generate N – m fragments, from the m they have, in order to verify the cross checksum. Storage-nodes
validate each write request they receive. This validation requires a comparison of the data-fragment’s
hash to the hash within the cross checksum, and a comparison of the cross checksum’s hash to the verifier
within the timestamp.

All requests and responses are authenticated via HMACS. The cost of authenticating write requests, listed
in the table, is very small. The cost of authenticating read requests and timestamp requests are similar.

 b=1 b=2 b=3 b=4
Erasure coding 1250 1500 1730 1990
Cross checksum 360 440 480 510
Validate 82 58 48 40
Verifier 1.6 2.3 3.6 4.3
Authenticate 1.5 1.5 2.1 2.1

Table 3.1: Computation costs in PASIS in µs.

3.5.4 Performance and Scalability

3.5.4.1 Response Time
Figure 3.3 shows the mean response time of a single request from a single client as a function of the
tolerated number of storage-node failures. Due to the fragility of the BFT implementation with b > 1, IP
multicast was disabled for BFT during this experiment. The focus in this plot is the slopes of the response
time lines: the flatter the line the more scalable the protocol is with regard to the number of faults
tolerated. In our environment, a key contributor to response time is network cost, which is dictated by the
space-efficiency of the protocol.

Figure 3.4 breaks down the mean response times of read and write operations, from Figure 3.3, into the
costs at the client, on the network, and at the storage-node for b = 1 and b = 4. Since measurements are
taken at the user-level, kernel-level timings for host network protocol processing (including network
system calls) are attributed to the “network” cost of the breakdowns. To understand the response time
measurements and scalability of these protocols, it is important to understand these breakdowns.

PASIS has better response times than BFT for write operations due to the space-efficiency of erasure
codes and the nominal amount of work storage-nodes perform to execute write requests. For b = 4, BFT
has a blowup of 13× on the network (due to replication), whereas our protocol has a blowup of

5
17 = 3.4

on the network. With IP multicast the response time of the BFT write operation would improve
significantly, since the client would not need to serialize 13 replicas over its link. However, IP multicast
does not reduce the aggregate server network utilization of BFT—for b = 4, 13 replicas must be delivered.

PASIS has longer response times than BFT for read operations. This can be attributed to two main
factors: First, the PASIS storage-nodes store data in a real file system; since the BFT-based block store
keeps all data in memory and accesses blocks via memory offsets, it incurs almost no server storage costs.
We expect that a BFT implementation with actual data storage would incur server storage costs similar to
PASIS (e.g., around 0.7 ms for a write and 0.4 ms for a read operation, as is shown for PASIS with b = 1
in Figure 3.4). Indeed, the difference in read response time between PASIS and BFT at b = 1 is mostly
accounted for by server storage costs. Second, for our protocol, the client computation cost grows as t
increases because the cost of generating data-fragments grows as N increases. In addition to the b = t case,

 26

1 2 3 4
0

2

4

6

8

10

12

14

16

18

20

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Total failures tolerated (t)

PASIS reads (b=t)
PASIS writes (b=t)
PASIS reads hybrid (b=1)
PASIS writes hybrid (b=1)
BFT reads w/o mcast (b=t)
BFT writes w/o mcast (b=t)

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Clients

PASIS reads (m=2)
PASIS writes (m=2)
PASIS reads (m=3)
PASIS writes (m=3)
BFT reads w/mcast
BFT writes w/mcast

Figure 3.3 shows one instance of PASIS assuming a hybrid fault model with b = 1. For space-efficiency,
we set m = t + 1. Consequently, QC = 2t + 1 and N = 3t + 2. At t = 1, this configuration is identical to the
Byzantine-only configuration. As t increases, this configuration is more space-efficient than the
Byzantine-only configuration, since it requires t – 1 fewer storage-nodes. As such, the response times of
read and write operations scale better.

3.5.4.2 Throughput
Figure 3.5 shows the throughput in 16 KB requests per second as a function of the number of clients (one
request per client) for b = 1. In this experiment, BFT uses multicast, which greatly improves its network
efficiency (BFT with multicast is stable for b = 1). PASIS was run in two configurations, one with the
thresholds set to that of the minimum system with m = 2, N = 5 (write blowup of 2.5×), and one, more
space-efficient, with m = 3, N = 6 (write blowup of 2×). Results show that throughput is limited by the
server network bandwidth

At high load, PASIS has greater write throughput than BFT. BFT’s write throughput flattens out at 456
requests per second. We observed BFT’s write throughput drop off as client load increased; likewise, we
observed a large increase in request retransmissions. We believe that this is due to the use of UDP and a
coarse grained retransmit policy in BFT’s implementation. The write throughput of PASIS flattens out at
733 requests per second, significantly outperforming BFT. This is because of the network-efficiency of
PASIS. Even with multicast enabled, each BFT server link sees a full 16 KB replica, whereas each PASIS
server link sees

m
16 KB. Similarly, due to network space-efficiency, the PASIS configuration using m = 3

outperforms the minimal PASIS configuration (954 requests per second). Both PASIS and BFT have
roughly the same network utilization per read operation (16 KB per operation). To be network-efficient,
PASIS uses read witnesses and BFT uses “fast path” read operations. However, PASIS makes use of
more storage-nodes than BFT does servers. As such, the aggregate bandwidth available for reads is
greater for PASIS than for BFT, and consequently PASIS has a greater read throughput than BFT.
Although BFT could add servers to increase its read throughput, doing so would not increase its write
throughput (indeed, write throughput would likely drop due to the extra inter-server communication).

3.5.4.3 Scalability Summary
For PASIS and BFT, scalability is limited by either the server network utilization or server CPU
utilization. Figure 3.4 shows that PASIS scales better than BFT in both. Consider write operations. Each
BFT server receives an entire replica of the data, whereas each PASIS storage-node receives a data-
fragment m

1 the size of a replica. The work performed by BFT servers for each write request grows with
b. In PASIS, the server protocol cost decreases from 90 µs for b = 1 to 57 µs for b = 4, whereas in BFT it
increases from 0.80 ms to 2.1 ms. The cost in PASIS decreases because m increases as b increases,

Figure 3.3: Mean Response time. Figure 3.4: Response breakdown. Figure 3.5: Throughput (b = 1).

 27

reducing the size of the data-fragment that is validated. We believe that the server cost for BFT increases
because the number of messages that must be sent increases.

3.5.5 Concurrency
To measure the effect of concurrency on the system, we measure multi-client throughput of PASIS when
accessing overlapping block sets. The experiment makes use of four clients, each with four operations
outstanding. Each client accesses a range of eight data blocks, with no outstanding requests from the same
client going to the same block. At the highest concurrency level (all eight blocks in contention by all
clients), we observed neither significant drops in bandwidth nor significant increases in mean response
time. Even at this high concurrency level, the initial candidate was classified as complete 89% of the time,
otherwise classification required the traversal of history information. Of these history traversals, repair
was only necessary a quarter of the time (i.e., 3% of all reads required repair). Since repair occurs so
seldom, the effect on response time and throughput is minimal.

3.6 Summary
We have developed an efficient Byzantine-tolerant protocol for reading and writing blocks of data.
Experiments demonstrate that PASIS, a prototype storage system that uses our protocol, scales well in the
number of faults tolerated, supports 60% greater write throughput than BFT, and requires significantly
less server computation than BFT. Further evaluation, a proof sketch of the correctness of the protocol,
and discussion of additional issues (e.g., garbage collection) can be found in the full technical report
[Goodson03]. This protocol also extends into a protocol family that includes members for other system
models (e.g., asynchronous or synchronous timing model, and crash-recovery failures) [Goodson04b].

3.7 Lazy Verification in Byzantine Fault-Tolerant Distributed Storage Systems:
Background

This section outlines the system model on which we focus, the protocol in which we develop lazy
verification, and related work.

3.7.1 System Model and Failure Types
Survivable distributed storage systems tolerate client and storage-node faults by spreading data
redundantly across multiple storage-nodes. We focus on distributed storage systems that can use erasure-
coding schemes, as well as replication, to tolerate Byzantine failures [Lamport82] of both clients and
storage-nodes. An m-of-N erasure-coding scheme (e.g., information dispersal [Rabin89]) encodes a data-
item into N fragments such that any m allows reconstruction of the original. Generally speaking, primary
goals for Byzantine fault-tolerant storage systems include data integrity, system availability, and
efficiency (e.g., [Cachin05b, Castro02, Goodson04a]).

Data integrity can be disrupted by faulty storage-nodes and faulty clients. First, a faulty storage-node can
corrupt the fragments/replicas that it stores, which requires that clients double-check integrity during
reads. Doing so is straightforward for replication, since the client can just compare the contents (or
checksums) returned from multiple storage-nodes. With erasure-coding, this is insufficient, but providing
all storage-nodes with the checksums of all fragments (i.e., a cross checksum [Gong89]) allows a similar
approach. Second, a faulty client can corrupt data-items with poisonous writes. A poisonous write
operation [Martin02] gives incompatible values to some of the storage-nodes; for replication, this means
non-identical values, and, for erasure-coding, this means fragments not correctly generated from the
original data-item (i.e., such that different subsets of m fragments will reconstruct to different values).
The result of a poisonous write is that different clients may observe different values depending on which
subset of storage-nodes they interact with. Verifying that a write is not poisonous is difficult with erasure-
coding, because one cannot simply compare fragment contents or cross checksums—one must verify that
fragments sent to storage-nodes were correctly generated from the same data-item value.

 28

Faulty clients can also affect availability and performance by stuttering. A stuttering client repeatedly
sends to storage-nodes a number of fragments (e.g., m−1 of them) that is insufficient to form a complete
write operation. Such behavior can induce significant overheads because it complicates verification and
may create long sequences of work that must be performed before successfully completing a read.

Our work on lazy verification occurs in the context of a protocol that operates in an asynchronous timing
model. But there is no correctness connection between the timing model and verification model.
Asynchrony does increase the number of storage-nodes involved in storing each data-item, which in turn
increases the work involved in verification and, thus, the performance benefits of lazy verification.

3.7.2 Read/write Protocol and Delayed Verification
This section begins a description of the concept of lazy verification in the context of the PASIS read/write
protocol [Goodson04a, Wylie04]. This protocol uses versioning to avoid the need to verify completeness
and integrity of a write operation during its execution. Instead, such verification is performed during read
operations. Lazy verification shifts the work to the background, removing it from the critical path of both
read and write operations in common cases.

The PASIS read/write protocol provides linearizable [Herlihy90] read and write operations on data blocks
in a distributed storage system [Goodson04b]. It tolerates crash and Byzantine failures of clients, and
operates in an asynchronous timing model. Point-to-point, reliable, authenticated channels are assumed.
The protocol supports a hybrid failure model for storage-nodes: up to t storage-nodes may fail, b ≤ t of
which may be Byzantine faults; the remainder are assumed to crash. For clarity of presentation, we focus
exclusively on the fully Byzantine failure model here (i.e., b = t), which requires N ≥ 4b + 1 storage-
nodes. The minimal system configuration (N = 4b + 1) can be supported only when the reconstruction
threshold m satisfies m ≤ b + 1; in our experiments we will consider m = b + 1 only.

An overview of the PASIS read/write protocol, including the mechanisms for erasure codes, data-
fragment integrity and write-operation integrity (timestamp validation, storage-node verification, etc.)
may be found in Sections 3.4.1 and 3.4.2. Under this protocol, the majority of verification work is
performed by the client during the read operation. The lazy verification approach developed in the
remainder of this chapter addresses this issue by having the storage-nodes communicate, prior to the next
read operation if possible, to complete verification for the latest complete write. Each storage-node that
observes the result of this verification can inform a client performing a read operation. If at least b + 1
confirm verification for the candidate, read-time verification becomes unnecessary. Section 3.8 details
how lazy verification works and techniques for minimizing its performance impact.

3.7.3 Related Work
The notion of verifiability that we study is named after a similar property studied in the context of m-of-N
secret sharing, i.e., that reconstruction from any m shares will yield the same value (e.g., [Feldman87,
Pederson91]). However, to address the additional requirement of secrecy, these works employ more
expensive cryptographic constructions that are efficient only for small secrets that, in particular, would be
very costly if applied to blocks in a storage system. The protocols we consider here do not require
secrecy, and so permit more efficient constructions. Most previous protocols perform verification
proactively during write operations. When not tolerating Byzantine faults, two- or three-phase commit
protocols are sufficient. For replicated data, verification can be made Byzantine fault-tolerant in many
ways. For example, in the BFT system [Castro02], clients broadcast their writes to all servers, and then
servers reach agreement on the hash of the written data value by exchanging messages. In other systems,
such as Phalanx [Malkhi00a], an “echo” phase like that of Rampart [Reiter95] is used: clients propose a
value to collect signed server echos of that value; such signatures force clients to commit the same value
at all servers. The use of additional communication and digital signatures may be avoided in Byzantine
fault-tolerant replica systems if replicas are self-verifying (i.e., if replicas are identified by a collision-
resistant hash of their own contents) [Martin02].

 29

Verification of erasure-coded data is more difficult, as described earlier. The validating timestamps of the
PASIS read/write protocol, combined with read-time or lazy verification, are one approach to addressing
this issue. Cachin and Tessaro [Cachin05b] recently proposed an approach based on asynchronous
verifiable information dispersal (AVID) [Cachin05a]. AVID’s verifiability is achieved by having each
storage-node send their data fragment, when it is received, to all other storage-nodes. Such network-
inefficiency reduces the benefits of erasure-coding, but avoids all read-time verification. Lazy verification
goes beyond previous schemes, for both replication and erasure-coding, by separating the effort of
verifying from write and read operations. Doing so allows significant reductions in the total effort (e.g.,
by exploiting data obsolescence and storage-node cooperation) as well as shifting the effort out of the
critical path. Unrelated to content verification are client or storage-node failures (attacks) that increase the
size of logical timestamps. Such a failure could significantly degrade system performance, but would not
affect correctness. Bazzi and Ding recently proposed a protocol to ensure non-skipping timestamps for
Byzantine fault-tolerant storage systems [Bazzi04] by using digital signatures. Cachin and Tessaro
[Cachin05b] incorporate a similar scheme based on a non-interactive threshold signature scheme.
Validating timestamps do not ensure non-skipping timestamps, but we believe that lazy verification could
be extended to provide bounded-skipping timestamps without requiring digital signatures. This will be an
interesting avenue for future work.

3.8 Lazy Verification
An ideal lazy verification mechanism has three properties: (i) it is a background task that never impacts
foreground read and write operations, (ii) it verifies values of write operations before clients read them
(so that clients need not perform verification), and (iii) it only verifies the value of write operations that
clients actually read. This sec- tion describes a lazy verification mechanism that attempts to achieve this
ideal in the PASIS storage system. It also describes the use of lazy verification to bound the impact of
Byzantine-faulty clients (Section 3.8.3) and its application to the garbage collection of unneeded versions
(Section 3.8.4).

3.8.1 Lazy Verification Basics
Storage-nodes perform verification using a similar process to a read operation, as described in Section
3.7.2. First, a storage-node finds the latest complete write version. Second, the storage-node performs
timestamp validation. If timestamp validation fails, the process is repeated: the storage-node finds the
previous complete write version, and performs timestamp validation on that version. Figure 3.6 illustrates
the construction and validation of a timestamp in the PASIS read/write protocol. Timestamp validation
requires the storage-node to generate a cross checksum based on the erasure-coded fragments it reads. If
the generated cross checksum matches that in the timestamp, then the timestamp validates.

Once a block version is successfully verified, a storage-node sets a flag indicating that verification has
been performed. (A block version that fails verification is poisonous and is discarded.) This flag is
returned to a reading client within the storage-node’s response. A client that observes b + 1 storage-node
responses that indicate a specific block version has been verified need not itself perform timestamp
validation, since at least one of the responses must be from a correct storage-node.

 30

Data
Erasure code data to
generate N fragments

Hash each fragment
and concatenate to
form cross checksum

Put cross checksum
in logical timestamp

Has h(F1)
Has h(F2)

Has h(FN)
• • •CC =

CCLT

Write: Construct timestamp Read: Given any m fragments with the
same timestamp, validate the timestamp

CCLT

Generate N fragments
given m fragments

Generate cross
checksum

CC`
Compare with cross
checksum in timestamp

CC = CC`?

FN`• • •F2`F1`

Fm• • •F2F1

FN• • •F2F1

When possible, lazy verification is
scheduled during idle time periods. Such
scheduling minimizes the impact of
verification on foreground requests.
Significant idle periods exist in most
storage systems, due to the bursty nature of
storage workloads. Golding et al.
[Golding95] evaluated various idle time
detectors and found that a simple timer-
based idle time detector accurately predicts
idle time periods for storage systems.
Another study showed that this type of idle
time detector performs well even in a
heavily loaded storage system
[Blackwell95].

Although pre-read verification is the ideal,
there is no guarantee that sufficient idle
time will exist to lazily verify all writes

prior to a read operation on an updated block. Then, there is the question of whether to let the client
perform verification on its own (as is done in the original PASIS read/write protocol), or to perform
verification on demand, prior to returning a read response, so that the client need not. The correct decision
depends on the workload and current load. For example, in a mostly-read workload with a light system
load, it is beneficial if the storage-nodes perform verification; this will save future clients from having to
perform verification. In situations where the workload is mostly-write or the system load is high, then it is
more beneficial if the clients perform verification; this increases the overall system throughput.

3.8.2 Cooperative Lazy Verification
Each storage-node can perform verification for itself. But, the overall cost of verification can be reduced
if storage-nodes cooperate. As stated above, a client requires only b + 1 storage-nodes to perform lazy
verification for it to trust the result. Likewise, any storage-node can trust a verification result confirmed
by b + 1 other storage-nodes. Ideally, then, only b + 1 storage-nodes would perform lazy verification.
Cooperative lazy verification targets this ideal.

With cooperative lazy verification, once a storage-node verifies a block version, it sends a notify message
to the other storage-nodes. The notify message is a tuple of +block number, timestamp, status,, where
“status” indicates the result of the verification. Figures 3.7(a) and 3.7(b) illustrate the messages
exchanged without and with cooperative lazy verification, respectively.

We first describe the common-case message sequences for cooperative lazy verification, in concurrency-
and fault-free operation. A single storage-node initiates lazy verification by performing verification and
sending a notify message to the other storage-nodes. Another b storage-nodes then perform verification
and send notify messages to the remaining storage-nodes. The remaining storage-nodes will thus receive
b + 1 identical notify messages, allowing them to trust the notify messages, since at least one storage-
node must be correct. To reduce the number of messages required and to distribute the work of
performing verification among storage-nodes, each storage-node is responsible for leading the
cooperative lazy verification of a distinct range of block numbers.

If a storage-node needs to verify a block before enough notify messages are received, it will perform
verification (and send notify messages), even for blocks that are outside the range it is normally
responsible for. In the event of faulty storage-nodes or concurrency, the notification messages may not
match. The remaining storage-nodes will then perform verification and send notify messages to the other

Figure 3.6: Illustration of the construction and
validation of timestamps.

 31

a) without cooperation

read-request
read-reply

read-request
read-reply
notify

b) with cooperation

storage-nodes, until all storage-nodes have either performed verification or received identical b + 1 notify
messages. In the worst case, all storage-nodes will perform verification.

The benefit of cooperative lazy verification is a reduction in the number of verification-related messages.
Without cooperation, each storage-node must independently perform verification (i.e., effectively perform
a read operation). This means each of the N storage-nodes sends read requests to, and receives read
responses from, N − b storage-nodes; this yields O(N2) messages without cooperation. In contrast, the
common case for cooperative lazy verification is for just b + 1 storage-nodes to perform read requests (to
N − b storage-nodes) and then send N − 1 notify messages. Even in the worst case in which 2b + 1 must
perform read requests, the communication complexity is still O(bN). For example, even in a minimal
system configu ration (N = 4b+1) with b = 1, cooperation saves 33% of messages (20 messages with
cooperation, versus 30 without), and this benefit improves to over 50% (128 vs. 260) at b = 3. Note that
storage-nodes that perform cooperative lazy verification need not send notify messages back to storage-
nodes from which they received a notify message.

3.8.3 Garbage Collection
If lazy verification passes for a block version, i.e., the block version is complete and its timestamp
validates, then block versions with earlier timestamps are no longer needed. The storage-node can delete
such obsolete versions. This application of lazy verification is called garbage collection. Garbage
collection allows memory and storage capacity at storage-nodes to be reclaimed by deleting unnecessary
versions.

In the original presentation of the PASIS read/write protocol, capacity is assumed to be unbounded. In
practice, capacity is bounded, and garbage collection is necessary. We distinguish between useful storage,
which is the user-visible capacity (i.e., number of blocks multiplied by fragment size), and the history
pool. The history pool is the capacity used for possible versions. Since the useful storage capacity must
usually be determined at system configuration time (e.g., during FORMAT), the maximum size of the
history pool will usually be fixed (at raw storage-node capacity minus useful storage capacity). Thus,
whenever the history pool’s capacity is exhausted, the storage-node must perform garbage collection (i.e.,
verification plus space reclamation) before accepting new write requests.

Capacity bounds, garbage collection, and liveness. Capacity bounds and garbage collection can impact
the liveness semantic of the PASIS read/write protocol. Without capacity bounds, reads and writes are
wait-free [Herlihy91]. With a capacity bound on the history pool, however, unbounded numbers of faulty
clients could collude to exhaust the history pool with incomplete write operations that cannot be garbage
collected—this effectively denies service. This possibility can be eliminated by bounding the number of
clients in the system and setting the history pool size appropriately—the history pool size must be the

Figure 3.7: Communication pattern of lazy verification (a) without and (b) with cooperation.

 32

product of the maximum number of clients and the per-client possible version threshold. With this
approach, a faulty client can deny service to itself but not to any other client.

Garbage collection itself also affects the liveness semantic, as it can interact with reads in an interesting
manner. Specifically, if a read is concurrent to a write, and if garbage collection is concurrent to both,
then it is possible for the read not to identify a complete candidate. For example, consider a read
concurrent to the write of version-3 with version-2 complete and all other versions at all storage-nodes
garbage collected. It is possible for the read to classify version-3 as incomplete, then for the write of
version-3 to complete, then for garbage collection to run at all storage-nodes and delete version-2, and
finally for the read to look for versions prior to version-3 and find none. Such a read operation must be
retried. Because of this interaction, the PASIS read/write protocol with garbage collection is obstruction-
free [Herlihy03] (assuming an appropriate history pool size) rather than wait-free.

Performing garbage collection. Garbage collection and lazy verification are tightly intertwined. An
attempt to verify a possible version may be induced by history pool space issues, per-client-per-block and
per-client thresholds, or the occurrence of a sufficient idle period. Previous versions of a block may be
garbage-collected once a later version is verified.

Cooperative lazy verification is applicable to garbage collection. If a storage-node receives notify
messages from b + 1 storage-nodes, agreeing that verification passed for a given version of a given block,
then the storage-node can garbage collect prior versions of that block. Of course, a storage-node may
receive b + 1 notify messages for a given block that have different timestamp values, if different storage-
nodes classify different versions as the latest complete write. In this case, the timestamps are sorted in
descending order and the b + 1st timestamp used for garbage collection (i.e., all versions prior to that
timestamp may be deleted). This is safe because at least one of the notify messages must be from a correct
storage-node.

There is an interesting policy decision regarding garbage collection and repairable candidates. If a client
performing a read operation encounters a repairable candidate, it must perform repair and return it as the
latest complete write. However, a storage-node performing garbage collection does not have to perform
repair. A storage-node can read prior versions until it finds a complete candidate and then garbage collect
versions behind the complete candidate. Doing so is safe, because garbage collection “reads” do not need
to fit into the linearizable order of operations. By not performing repair, storage-nodes avoid performing
unnecessary work when garbage collection is concurrent to a write. On the other hand, performing repair
might enable storage-nodes to discard one more block version.

Prioritizing blocks for garbage collection. Careful selection of blocks for verification can improve
efficiency, both for garbage collection and lazy verification. Here, we focus on two complementary
metrics on which to prioritize this selection process: number of versions and presence in cache.

Since performing garbage collection (lazy verification) involves a number of network messages, it is
beneficial to amortize the cost by collecting more than one block version at a time. Each storage-node
remembers how many versions it has for each block. By keeping this list sorted, a storage-node can
efficiently identify its high-yield blocks: blocks with many versions. Many storage workloads contain
blocks that receive many over-writes [Ruemmler03a, Ruemmler03b], which thereby become high-yield
blocks. When performing garbage collection, storage-nodes prefer to select high-yield blocks. In the
common case, all but one of the block’s versions will have timestamps less than the latest candidate that
passes lazy verification and hence can be deleted (and never verified). Selecting high-yield blocks
amortizes the cost of verification over many block versions. This is particularly important when near the
per-client possible version threshold or the history pool size, since it minimizes the frequency of on-
demand verification.

Block version lifetimes are often short, either because of rapid overwrites or because of create-delete
sequences (e.g., temporary files). To maximize the value of each verification operation, storage-nodes

 33

delay verification of recently written blocks. Delaying verification is intended to allow rapid sequences to
complete, avoiding verification of short-lived blocks and increasing the average version yield by verifying
the block once after an entire burst of over-writes. As well, such a delay reduces the likelihood that
verification of a block is concurrent with writes to the block. Running verification concurrent to a write,
especially if only two local versions exist at a storage-node, may not yield any versions to garbage collect.

Storage-nodes prefer to verify versions while they are in the write-back cache, because accessing them is
much more efficient than when going to disk. Moreover, if a block is in one storage-node’s cache, it is
likely to be in the caches of other storage-nodes, and so verification of that block is likely to not require
disk accesses on the other storage-nodes. Garbage collecting versions that are in the write-back cache,
before they are sent to the disk, is an even bigger efficiency boost. Doing so eliminates both an initial disk
write and all disk-related garbage collection work. Note that this goal matches well with garbage
collecting high-yield blocks, if the versions were created in a burst of over-writes.

In-cache garbage collection raises an interesting possibility for storage-node implementation. If only
complete writes are sent to disk, which would restrict the history pool size to being less than the cache
size, one could use a non-versioning on-disk organization. This is of practical value for implementers who
do not have access to an efficient versioning disk system implementation. The results from Section 3.10.3
suggest that this is feasible with a reasonably large storage-node cache (e.g., 500MB or more).

3.9 Implementation
To enable experimentation, we have added lazy verification to the PASIS storage system implementation
[Goodson04a]. PASIS consists of storage-nodes and clients. Storage-nodes store fragments and their
versions. Clients execute the protocol to read and write blocks. Clients communicate with storage-nodes
via a TCP-based RPC interface.

Storage-nodes. Storage-nodes provide interfaces to write a fragment at a logical time, to query the
greatest logical time, to read the fragment version with the greatest logical time, and to read the fragment
with the greatest logical time before some logical time. With lazy verification, storage-nodes do not return
version history or fragments for writes that have been classified as poisonous. In the common case, a
client requests the fragment with the greatest logical time. If a client detects a poisonous or incomplete
write, it reads the previous version history and earlier fragments.

Each write request creates a new version of the fragment (indexed by its logical timestamp) at the storage-
node. The storage-node implementation is based on the S4 object store [Soules03, Strunk00]. A log-
structured organization [Rosenblum92] is used to reduce the disk I/O cost of data versioning. Multi-
version b-trees [Becker96, Soules03] are used by the storage-nodes to store fragments; all fragment
versions are kept in a single b-tree indexed by a 2-tuple +blocknumber, timestamp,. The storage-node uses
a write-back cache for fragment versions, emulating non-volatile RAM.

We extended the base PASIS storage-node to perform lazy verification. Storage-nodes keep track of
which blocks have possible versions and perform verification when they need the history pool space,
when a possible version threshold is reached, or when idle time is detected. If verification is induced by a
per-client-per-block possible version threshold, then that block is chosen for verification. Otherwise, the
storage-node’s high-write-count table is consulted to select the block for which verification is expected to
eliminate the highest number of versions. The high-write-count table lists blocks for which the storage-
node is responsible in descending order of the number of unverified versions associated with each.

Each storage-node is assigned verification responsibility for a subset of blocks in order to realize
cooperative lazy verification. Responsibility is assigned by labeling storage-nodes from
0...(N − 1) and by having only storage-nodes k mod N, (k + 1) mod N, · · · , (k + b) mod N be responsible
for block k. In the event of failures, crash or Byzantine, some storage-nodes that are responsible for a
particular block may not complete verification. Therefore, any storage-node will perform verification if it

 34

does not receive sufficient notify messages before they reach a possible version threshold or exceed
history pool capacity. So, while b + 1 matching notify messages about a block will allow a storage-node
to mark it as verified, failure to receive them will affect only performance.

Client module. The client module provides a block-level interface to higher-level software. The protocol
implementation includes a number of performance enhancements that exploit its threshold nature. For
example, to improve the responsiveness of write operations, clients return as soon as the minimum
number of required success responses is received; the remainder of the requests complete in the
background. To improve the read operation’s performance, only m read requests fetch the fragment data
and version history; the remaining requests only fetch version histories. This makes the read operation
more network-efficient. If necessary, after classification, extra fragments are fetched according to the
candidate’s timestamp.

PASIS supports both replication and an m-of-N erasure coding scheme. If m = 1, then replication is
employed. Otherwise, our base erasure code implementation stripes the block across the first m
fragments; each stripe-fragment is 1 m the length of the original block. Thus, concatenation of the first m
fragments produces the original block. (Because “decoding” with the m stripe-fragments is
computationally less expensive, the implementation always tries to read from the first m storage-node for
any block.) The stripe-fragments are used to generate the N − m code-fragments, via polynomial
interpolation within a Galois Field. The implementation of polynomial interpolation is based on publicly
available code [Dai-b] for information dispersal [Rabin89]. As detailed in Section 3.5, this code was
modified to make use of stripe-fragments and to add an implementation of Galois Fields of size 28 that
use lookup tables for multiplication. MD5 is used for all hashes; thus, each cross checksum is N × 16
bytes long.

We extended the PASIS client module to use the flag described in Section 3.8.1 to avoid the verification
step normally involved in every read operation, when possible. It checks the “verified” flag returned from
each contacted storage-node and does its own verification only if fewer than b + 1 of these flags are set.
In the normal case, these flags will be set and read-time verification can be skipped.

3.10 Evaluation
This section quantifies benefits of lazy verification. It shows that significant increases in write throughput
can be realized with reasonably small history pool sizes. In fact, lazy verification approaches the ideal of
zero performance cost for verification. It also confirms that the degradation-of-service vulnerability
inherent to delayed verification can be bounded with minimal performance impact on correct clients.

3.10.1 Experimental Setup
All experiments are performed on a collection of Intel Pentium 4 2.80GHz computers, each with 1GB of
memory and an Intel PRO/1000 NIC. The computers are connected via an HP ProCurve Switch 4140gl
specified to perform 18.3Gbps/35.7mpps. The computers run Linux kernel 2.6.11.5 (Debian 1:3.3.4-3).

Micro-benchmark experiments are used to focus on performance characteristics of lazy verification. Each
experiment consists of some number of clients performing operations on a set of blocks. Experiments are
run for 40 seconds and measurements are taken after 20 seconds. (The 20 second warm-up period is
sufficient to ensure steady-state system operation.) For the benchmarks used in this section, the working
set and history pool are sized to fit in the storage-nodes’ RAM caches. Given that the storage-node cache
is assumed to be non-volatile, this eliminates disk activity and allows focus to stay on the computation
and networking costs of the protocol.

 35

70 140 210 280 350 420 490 560 630 700
0

10

20

30

40

50

60

70

80

90

100

History pool size (MB)

To
ta

l w
rit

e
th

ro
ug

hp
ut

 (M
B

/s
)

Ideal (no verify)

Lazy + coop

Lazy

Write−time verification

3.10.2 Verification Policies and Operation Latencies
A storage system’s verification policy affects client read and write operation latencies. We ran an
experiment to measure the operation latencies for three different verification policies: proactive write-
time verification, read-time verification, and lazy verification. The write-time verification policy is
emulated by having each storage-node perform verification for a block immediately after it accepts a
write request—this is similar to the system described by Cachin and Tessaro [Cachin05b]. With the read-
time verification policy, the client incurs the cost of verification on every read operation.

We ran experiments for different numbers of tolerated server faults (from b = 1 to b = 5). For each
experiment, we used the minimal system configuration: N = 4b + 1. The erasure coding reconstruction
threshold m equals b + 1 in each experiment. This provides the maximal space- and network-efficiency
for the value of N employed. A single client performs one operation at a time. The client workload is an
equal mix of read and write operations. After each operation, the client sleeps for 10ms. This introduces
idle time into the workload.

Figure 3.8(a) shows the client write latency for the different verification policies. The write-time
verification policy has a higher write latency then the two other verification policies. This is because the
storage-nodes perform verification in the critical path of the write operation. For both the read-time and

lazy verification policies, the client write latency
increases slightly as more faults are tolerated. This is
due to the increased computation and network cost
of generating and sending fragments to more servers.

Figure 3.8(b) shows the client read latency for the
different verification policies. For the read-time
verification policy, the client read latency increases
as more faults are tolerated. This is because the
computation cost of generating the fragments to
check the cross checksum and validate the timestamp
increases as b increases. For the write-time
verification policy, verification is done at write-time,
and so does not affect read operation latency. For the
lazy verification policy, sufficient idle time exists in
the workload for servers to perform verification in
the background. As such, the read latency for the
lazy verification policy follows that for the write-

Figure 3.8: Operation latencies for different verification policies.

Figure 3.9: Write throughput, as a function of history
pool size, for four ver

a) read latency b) write latency

1 2 3 4 5
0

0.5

1

1.5

2

2.5

Server faults tolerated (b)

R
ea

d
 la

te
n

cy
 (

m
s)

Write−time verification
Read−time verification
Lazy verification

1 2 3 4 5
0

0.5

1

1.5

2

2.5

Server faults tolerated (b)

R
ea

d
 la

te
n

cy
 (

m
s)

Write−time verification
Read−time verification
Lazy verification

 36

time verification policy.

These experiments show that, in workloads with sufficient idle time, lazy verification removes the cost of
verification from the critical path of client read and write operations. Lazy verification achieves the fast
write operation latencies associated with read-time verification, yet avoids the overhead of client
verification for read operations.

3.10.3 Impact on Foreground Requests
In many storage environments, bursty workloads will provide plenty of idle time to allow lazy verification
and garbage collection to occur with no impact on client operation performance. To explore bounds on
the benefits of lazy verification, this section evaluates lazy verification during non-stop high-load with no
idle time. When there is no idle time, and clients do not exceed the per-client or per-block-per-client
thresholds, verification is induced by history pool exhaustion. The more efficient verification and garbage
collection are, the less impact there will be on client operations.

In this experiment, four clients perform write operations on 4096 32KB blocks, each keeping eight
operations in progress at a time and randomly selecting a block for each operation. Also, the system is
configured to use N = 5 storage-nodes, while tolerating one Byzantine storage-node fault (b = 1) and
employing 2-of-5 erasure-coding (so, each fragment is 16KB in size, and the storage-node working set is
64MB).

Figure 3.9 shows the total client write throughput, as a function of history pool size, with different
verification policies. The top and bottom lines correspond to the performance ideal (zero-cost
verification) and the conventional approach of performing verification during each write operation,
respectively. The ideal of zero-cost verification is emulated by having each storage-node replace the old
version with the new without performing any verification at all. As expected, neither of these lines is
affected by the history pool size, because versions are very short-lived for these schemes. Clearly, there is
a significant performance gap (5×) between the conventional write-time verification approach and the
ideal.

The middle two lines correspond to use of lazy verification with (“Lazy + coop”) and without (“Lazy”)
cooperative lazy verification. Three points are worth noting. First, with lazy verification, client write
throughput grows as the history pool size grows. This occurs because a larger history pool allows more
versions of each block to accumulate before history pool space is exhausted. As a result, each verification
can be amortized over a larger number of client writes. (Recall that all earlier versions can be garbage
collected once a later version is verified.) Second, with a reasonably-sized 700MB history pool size,
cooperative lazy verification provides client write throughput within 9% of the ideal. Thus, even without
idle time, lazy verification eliminates most of the performance costs of verification and garbage
collection, providing a factor of four performance increase over conventional write-time verification
schemes. Third, cooperative lazy verification significantly reduces the impact of verification, increasing
client write throughput by 53–86% over non-cooperative lazy verification for history pool sizes over
200MB.

3.11 Summary
Lazy verification can significantly improve the performance of Byzantine fault-tolerant distributed
storage systems that employ erasure-coding. It shifts the work of verification out of the critical path of
client operations and allows significant amortization of work. Measurements show that, for workloads
with idle periods, the cost of verification can be hidden from both the client read and write operation. In
workloads without idle periods, lazy verification and its concomitant techniques—storage-node
cooperation and prioritizing the verification of high-yield blocks—provides a factor of four greater write
bandwidth than a conventional write-time verification strategy.

 37

4 FAULT SCALABLE BYZANTINE FAULT-TOLERANT SERVICES:
QUERY/UPDATE PROTOCOL

4.1 Introduction
Today’s distributed services face unpredictable network delays, arbitrary failures induced by increasing
software complexity, and even malicious behavior and attacks from within compromised components.
Like many, we believe it is important to design for these eventualities. In fact, it is increasingly important
to design for multiple faults and for graceful degradation in the face of faults. Services are being designed
for a massive scale in open clusters (e.g., like the Farsite project [Adya02]), over the WAN (e.g., like the
OceanStore project [Rhea03]), and in administration-free clusters that allow components to fail in place
(e.g., like the Collection of Intelligent Bricks project [Morris02]). In such settings, timing faults (such as
those due to network delays and transient network partitions) and failures of multiple components, some
of which may be Byzantine in nature (i.e., arbitrary or malicious), may arise. Moreover, rates of server
and client crashes in such settings will likely be higher than in carefully-administered settings.

There is a compelling need for services (e.g., namespace, key management, metadata, and LDAP) and
distributed data structures (e.g., b-trees, queues, and logs) to be efficient and fault-tolerant. Various
services and data structures that efficiently tolerate benign failures have been developed (e.g., Paxos
[Lamport98], Boxwood [MacCormick04], and Chain Replication [VanRenesse04]). In the context of
tolerating Byzantine faults, the focus has been on building services via replicated state machines using an
agreement-based approach [Lamport78, Schneider90]. Examples of such systems include the BFT system
of Castro and Liskov [Castro02] and the SINTRA system of Cachin and Poritz [Cachin02].

A fault-scalable service is defined to be one in which performance degrades gradually, if at all, as more
server faults are tolerated. Our experience is that Byzantine fault-tolerant agreement-based approaches are
not fault-scalable: their performance drops rapidly as more faults are tolerated because of server-to-server
broadcast communication and the requirement that all correct servers process every request.

This chapter describes the Query/Update (Q/U) protocol as a fault-scalable alternative to these
approaches. The Q/U protocol is an efficient, optimistic, quorum-based protocol for building Byzantine
fault-tolerant services. Services built with the Q/U protocol are fault-scalable. The Q/U protocol provides
an operations-based interface that allows services to be built in a similar manner to replicated state
machines [Lamport78, Schneider90]. Q/U objects export interfaces comprised of deterministic methods:
queries that do not modify objects and updates that do. Like a replicated state machine, this allows
objects to export narrow interfaces that limit how faulty clients may modify objects [Schneider90]. A
client's update of an object is conditioned on the object version last queried by the client. An update
succeeds only if the object has not been modified since the client's last query in which case it is retried.
Moreover, the Q/U protocol supports multi-object updates that atomically update a set of objects
conditioned on their respective object versions.

The Q/U protocol operates correctly in an asynchronous model (i.e., no timing assumptions are necessary
for safety), tolerates Byzantine faulty clients, and tolerates Byzantine faulty servers. Queries and updates
in the Q/U protocol are strictly serializable [Bernstein87]. In a benign execution (i.e., an execution in
which components act according to specification or crash), queries and updates are obstruction-free
[Herlihy03]. The “cost” of achieving these properties with the Q/U protocol, relative to other approaches,
is an increase in the number of required servers: the Q/U protocol requires 5b+1 servers to tolerate b
Byzantine faulty servers, whereas most agreement-based approaches require 3b+1 servers. Given the
observed performance of the Q/U protocol, we view this as a good trade-off—the cost of servers
continues to decline, while the cost of service failures does not.

The Q/U protocol achieves its performance and faults-scalability through novel integration of a number of
techniques. Optimism is enabled by the use of non-destructive updates at versioning servers, which

 38

1 10 20 30 40
Number of servers (n)

Th
ro

ug
hp

ut
 (r

eq
/s

)

0

5

10

15

S
er

ve
r f

au
lts

 to
le

ra
te

d
(b

)

Quorum (req/s)

Agreement (req/s)

Quorum (b)

Agreement (b)

permits operations to efficiently resolve
contention and/or failed updates, e.g., by
querying earlier object versions and completing
partial updates. We leverage this versioning
together with a logical time-stamping scheme
in which each update operation is assigned a
timestamp that depends both on the contents of
the update and the object state on which it is
conditioned. It is thus impossible for a faulty
client to submit different updates at the same
timestamp—the updates intrinsically have
different timestamps—and so, reaching
agreement on the update at a given timestamp
is unnecessary. We combine these techniques
with quorums and a strategy for accessing
them using a preferred quorum per object so
as to make server-to-server communication an
exceptional case. Finally, we employ efficient
cryptographic techniques. Our integration of
these techniques has enabled, to our
knowledge, the first fault-scalable, Byzantine-
resilient implementation for arbitrary services.

We implemented a prototype library for the Q/U protocol. We used this library to build two services: a
metadata service that exports NFSv3 metadata methods, and a counter object that exports increment
(increment) and fetch (fetch) methods. Measurements of these prototype services support our claims: the
prototype Q/U services are efficient and fault-scalable. In contrast, the throughput of BFT [Castro02], a
popular agreement-based Byzantine fault-tolerant replicated state machine implementation, drops sharply
as the number of faults tolerated increases. The prototype Q/U-based counter outperforms a similar
counter object implemented with BFT at all system sizes in contention-free experiments. More
importantly, it is more fault-scalable. Whereas the performance of the Q/U-based counter object decreases
by 36% as the number of faults tolerated is increased from one to five, the performance of the BFT-based
counter object decreases by 83%.

4.2 Efficiency and Scalability
In a Byzantine fault-tolerant quorum-based protocol (e.g., [Malkhi98a, Malkhi00a, Chockler01, Martin02,
Zhou02, Fry04]), only quorums (subsets) of servers process each request, and server-to-server
communication is generally avoided. In a Byzantine fault-tolerant agreement-based protocol (e.g.,
[Bracha85, Reiter95, Kihlstrom01, Castro02, Cachin02, Kursawe02]), on the other hand, every server
processes each request and performs server-to-server broadcast. As such, these approaches exhibit
fundamentally different fault-scalability characteristics.

The expected fault-scalability of quorum- and agreement-based approaches is illustrated in Figure 4.1. A
protocol that is fault-scalable provides throughput that degrades gradually, if at all, as more server faults
are tolerated. Because each server must process every request in an agreement-based protocol, increasing
the number of servers cannot increase throughput. Indeed, since server-to-server broadcast is required, the
useful work each server can do decreases as the number of servers increases. As illustrated, though,
agreement-based protocols generally require fewer servers than quorum-based protocols for a given
degree of fault-tolerance.

With quorum-based protocols, as the number of server faults tolerated increases, so does the quorum size.
As such, the work required of a client grows as quorum size increases. Servers do a similar amount of

Figure 4.1: Illustration of fault-scalability. As the number of
server faults tolerated increases (right axis, dashed lines),
the number of servers required (x-axis) by quorum- and
agreement-based protocols increases. In theory,
throughput (left axis, solid lines) of quorum-based
approaches (e.g., based on a threshold quorum) is
sustained as more faults are tolerated, whereas
agreement-based approaches do not have this property. In
practice, throughput of prototype Q/U-based services
degrades somewhat as more faults are tolerated.

 39

work per operation regardless of quorum size. However, the Q/U protocol does rely on some
cryptographic techniques (i.e., authenticators which are discussed in x3) whose costs grow with quorum
size.

4.2.1 Efficiency
Much of the efficiency of the Q/U protocol is due to its optimism. During failure- and concurrency-free
periods, queries and updates occur in a single phase. To achieve failure atomicity, most pessimistic
protocols employ at least two phases (e.g., a prepare and a commit phase). The optimistic approach to
failure atomicity does not require a prepare phase; however, it does introduce the need for clients to repair
(write-back) inconsistent objects. To achieve concurrency atomicity, most pessimistic protocols either
rely on a central point of serialization (e.g., a primary) or employ locks (or leases) to suppress other
updates to an object while the lock-holder queries and updates the object. The optimistic approach to
concurrency atomicity [Kung81] does not require lock acquisition, but does introduce the possibility that
updates are rejected (and that clients may livelock).

The Q/U protocol relies on versioning servers for its optimism. Every update method that a versioning
server invokes results in a new object version at that server. Queries complete in a single phase so long as
all of the servers in the quorum contacted by a client share a common latest object version. Updates
complete in a single phase so long as none of the servers in the quorum contacted by a client have updated
the object since it was queried by the client. To promote such optimistic execution, clients introduce
locality to their quorum accesses and cache object version information. Clients initially send requests to
an object's preferred quorum and do not issue queries prior to updates for objects whose version
information they cache. Finally, versioning servers reduce the cost of protecting against Byzantine faulty
clients, since servers need not agree on client requests before processing them.

Many prior protocols, both pessimistic and optimistic, make use of versions and/or logical timestamps.
One difference with prior protocols is that server retention of object versions is used to efficiently tolerate
Byzantine faulty clients. Most protocols that tolerate Byzantine faulty clients rely on digital signatures or
server-to-server broadcasts. Another difference is that there is no concept of a commit phase in the Q/U
protocol (not even a lazy commit).

4.2.2 Throughput Scalability
The primary benefit that the Q/U protocol gains from the quorum-based approach is fault-scalability.
Quorum-based protocols can also exhibit throughput-scalability: additional servers, beyond those
necessary for providing the desired fault-tolerance, can increase throughput [Naor98, Malkhi00b]. The
experience of database practitioners suggests that it may be difficult to take advantage of quorum-based
throughput-scalability though. For example, Jiménez-Peris et al. recently concluded that a write-all read-
one approach is better for a large range of database applications than a quorum-based approach [Jimenez-
Peris03]. But their analysis ignores concurrency control and is based on two phase commit-based data
replication with fail-stop failures in a synchronous model. The Q/U protocol provides both concurrency
and failure atomicity, provides service replication rather than data replication, relies on no synchrony
assumptions, and relies on few failure assumptions. As another example, Gray et al. identify that the use
of quorum-based data replication in databases leads to the scaleup pitfall: the higher the degree of
replication, the higher the rate of deadlocks or reconciliations [Gray96]. But, databases are not designed
to scale up gracefully. The ability to update multiple objects atomically with the Q/U protocol allows
services to be decomposed into fine-grained Q/U objects. Fine-grained objects reduce per-object
contention, making optimistic execution more likely, enabling parallel execution of updates to distinct
objects, and improving overall service throughput. If a service can be decomposed into fine-grained Q/U
objects such that the majority of queries and updates are to individual objects, and the majority of multi-
object updates span a small number of objects, then the scaleup pitfall can be avoided. Our experience
building a Q/U-NFSv3 metadata service suggests that it is possible to build a substantial service
comprised of fine-grained objects. For example, most metadata operations access a single object or two

 40

distinct objects. (The only operation that accesses more than two objects is the RENAME operation which
accesses up to four objects.) In response to some criticisms of quorum-based approaches, Wool argues
that quorum-based approaches are well-suited to large scale distributed systems that tolerate malicious
faults [Wool98]. Wool's arguments support our rationale for using a quorum-based approach to build
fault-scalable, Byzantine fault-tolerant services.

Many recent fault-tolerant systems achieve throughput-scalability by partitioning the services and data
structures they provide (e.g., [Litwin00, Gribble00, Adya02, Rhea03, MacCormick04, VanRenesse04]).
By partitioning different objects into different server groups, throughput scales with the addition of
servers. However, to partition, these systems either forego the ability to perform operations that span
objects (e.g., [Litwin00, Gribble00, Rhea03, VanRenesse04]) or make use of a special protocol/service
for “transactions” that span objects (e.g., [Adya02, MacCormick04]). Ensuring the correctness and
atomicity of operations that span partitions is complex and potentially quite expensive, especially in an
asynchronous, Byzantine fault-tolerant manner. To clarify the problem with partitioning, consider a
RENAME operation that moves files between directories in a metadata service. If different server groups
are responsible for different directories, an interserver group protocol is needed to atomically perform the
RENAME operation (e.g., as is done in Farsite [Adya02]). Partitioning a service across server groups
introduces dependencies among server groups. Such dependencies necessarily reduce the reliability of the
service, since many distinct server groups must be available simultaneously.

4.3 The Query/Update Protocol
This section begins with a discussion of the system model and an overview of the Q/U protocol for
individual objects. We discuss constraints on the quorum system needed to ensure the correctness of the
Q/U protocol. We present detailed pseudo-code and discuss implementation details and design trade-offs.
To make the Q/U protocol's operation more concrete, we describe an example system execution. We
describe the extension of the Q/U protocol for individual objects to multiple objects. Finally, we discuss
the correctness of the Q/U protocol.

4.3.1 System Model
To ensure correctness under the broadest possible conditions, we make few assumptions about the
operating environment. An asynchronous timing model is used; no assumptions are made about the
duration of message transmission delays or the execution rates of clients and servers (except that they are
non-zero and finite). Clients and servers may be Byzantine faulty [Malkhi01]: they may exhibit arbitrary,
potentially malicious, behavior. Clients and servers are assumed to be computationally bounded so that
cryptographic primitives are effective. Servers have persistent storage that is durable through a crash and
subsequent recovery.

The server failure model is a hybrid failure model [Thambidurai88] that combines Byzantine failures with
crash-recovery failures (as defined by Aguilera et al. [Aguilera00]). A server is benign if it is correct or if
it follows its specification except for crashing and (potentially) recovering; otherwise, the server is
malevolent. Since the Byzantine failure model is a strict generalization of the crash-recovery failure
model, another term—malevolent—is used to categorize those servers that in fact exhibit out-of-
specification, non-crash behavior. A server is faulty if it crashes and does not recover, crashes and
recovers ad infinitum, or is malevolent.

We extend the definition of a fail prone system given in Malkhi and Reiter [Malkhi98a] to accommodate
this hybrid failure model. We assume a universe U of servers such that |U| = n. The system is
characterized by two sets: T ⊆ 2U and B ⊆ 2U (the notation 2set denotes the power set of set). In any
execution, all faulty servers are included in some T ∈ T and all malevolent servers are included in some B
∈ B. It follows from the definitions of faulty and malevolent that B ⊆ T.

 41

{1, 0}

{1, 0}

{1, 0}

{1, 0}

{1, 0}

{0}

Servers Client

Replica

histories
Object

history

set

⊥
{1, 0}

{1, 0}

{1, 0}

{1, 0}

{1, 0}

⊥
{1, 0}

{1, 0}

{1, 0}

{1, 0}

{1, 0}

Quorum of

responses

Candidate

of order 5

Candidate

of order 5

Timestamps

of candidates

Timestamps

of candidates

The Q/U protocol is a quorum-based protocol. A quorum system Q ⊆ 2U is a non-empty set of subsets of
U, every pair of which intersect; each Q ∈ Q is called a quorum. Constraints on the quorum system are
described in Section 4.3.3. For simplicity, in the pseudo-code (Section 4.3.4) and the example execution
(Section 4.3.6) presented here, we focus on threshold quorums. With a threshold quorum system, a fail
prone system can simply be described by bounds on the total number of faulty servers: there are no more
than t faulty servers of which no more than b ≤ t are malevolent. Point-to-point authenticated channels
exist among all of the servers and between all of the clients and servers. An infrastructure for deploying
shared symmetric keys among pairs of servers is assumed. Finally, channels are assumed to be unreliable,
with the same properties as those used by Aguilera et al. in the crash-recovery model (i.e., channels do not
create messages, channels may duplicate messages a finite number of times, and channels may drop
messages a finite number of times) [Aguilera00]. Such channels can be made reliable by repeated resends
of requests.

4.3.2 Overview
This section overviews the Q/U protocol for an individual object.

Terminology. Q/U objects are replicated at each of the n servers in the system. Q/U objects expose an
operations-based interface of deterministic methods. Read-only methods are called queries, and methods
that modify an object’s state are called updates. Methods exported by Q/U objects take arguments and
return answers. The words “operation” and “request” are used as follows: clients perform operations on
an object by issuing requests to a quorum (subset) of servers. A server receives requests; if it accepts a
request, it invokes a method on its local object replica.

Each time a server invokes an update method on its copy of the object, a new object version results. The
server retains the object version as well as its associated logical timestamp in a version history called the
replica history. Servers return replica histories to clients in response to requests.

A client stores replica histories returned by servers in its object history set (OHS), which is an array of
replica histories indexed by server. In an asynchronous system, clients only receive responses from a
subset of servers. As such, the OHS represents the client’s partial observation of global system state at
some point in time. Timestamps in the replica histories in the OHS are referred to as candidates.
Candidates are classified to determine which object version a client method should be invoked on at the
servers. Note that there is a corresponding object version for every candidate. Figure 4.2 illustrates
candidates, replica histories, and the object history set.

Client side. Because of the optimistic nature of the Q/U protocol, some operations require more client
steps to complete than others. In an optimistic execution, a client completes queries and updates in a
single phase of communication with servers. In a non-optimistic execution, clients perform additional
repair phases that deal with failures and contention.

Figure 4.2: Example of client and server state.

 42

The operations-based interface allows clients to send operations and receive answers from the service;
this provides light-weight client-server communication relative to reading and writing entire objects. To
perform an operation, a client first retrieves the object history set. A client’s operation is said to condition
on its object history set (the conditioned-on OHS). The client places the object history set, the method to
invoke, and the arguments for the method in a request it sends to servers. By sending the object history
set, the client communicates information to the servers about global system state.

Both clients and servers classify the conditioned-on OHS to determine which object version a client
operation should be performed on at the servers. Classification of a candidate is based on the subset of
server replica histories in the object history set in which it appears. (For threshold quorums, classification
of a candidate is based on its order, the number of replica histories in the object history set in which it
appears.) If all of the replica histories in the conditioned-on OHS have the same latest candidate, this
candidate is classified as complete. This is illustrated in Figure 4.2.

The optimistic nature of the Q/U protocol allows a client to complete queries, and updates conditioned on
a cached object history set, in a single phase of client-server communication during failure- and
concurrency-free access. Clients cache object history sets. This allows clients to avoid retrieving an object
history set before every update operation. So long as no other clients update the object, the cached object
history set remains current. Only the quorum of servers that accepted the last update operation has the
latest object version. As such, it is most efficient for these servers to process the subsequent update
operation. To promote locality of access, and thus efficiency, each object has a preferred quorum at
which clients try to access it first. In the case of server failures, clients may have to access a non-preferred
quorum. Single phase operations are premised on the client's cached object history set being current
(concurrency-free access) and on accessing an object via its preferred quorum (failure-free access).

Server side. Upon receipt of a request, a server first validates the integrity of the conditioned-on OHS.
Each server pairs an authenticator with its replica history and clients include the authenticators in the
conditioned-on OHS. Authenticators are lists of HMACs that prevent malevolent clients and servers from
fabricating replica histories for benign servers. Servers cull replica histories from the conditioned-on OHS
when they cannot validate the authenticator. Authenticators are needed because servers do not directly
exchange replica histories with one another; they are communicated between servers via the client.

If the conditioned-on OHS passes integrity validation, the server performs classification. Next, a server
validates that the conditioned-on OHS is current. The server does this by comparing the timestamps of
candidates in its replica history with the current timestamp classification identified for the conditioned-on
OHS. If the server has a higher timestamp in its replica history then the current timestamp identified by
classification, the conditioned-on OHS is not current. Validating currentness ensures that servers invoke
methods on the latest complete object version, rather than one of its predecessors. If all validation passes,
a server accepts the request and invokes the requested method. The method is invoked on the object
version corresponding to the latest candidate in the conditioned-on OHS. If the method is an update, a
new version of the object results. The timestamp for the resulting object version is a deterministic
function of the conditioned-on OHS and the operation performed. As such, all servers that receive the
same operation and object history set create the same object version and construct the same timestamp for
that object version. Timestamps are constructed so that they always increase in value. The server updates
its replica history with the resulting timestamp and stores the resulting object version indexed by that
timestamp. The server sends a response to the client, indicating success, including the answer to the
method, its replica history, and its authenticator. The client updates its object history set with the returned
replica histories and authenticators. Once the client receives a quorum of responses that return success,
the operation returns successfully.

Tolerating failures. If a server crashes, some quorums may become unavailable. This may lead to clients
probing additional servers to collect a quorum of responses (probing is the term used to describe finding a
live quorum). To protect against malevolent components, timestamps contain the client ID, the operation

 43

(method and arguments), and the conditioned-on OHS. Because the operation is tied to the timestamp, an
operation can only complete successfully if a client sends the same operation to all servers in a quorum.
This mechanism makes it impossible for malevolent clients to force object versions at different benign
servers with the same timestamp to differ. The authenticators in the object history set make it impossible
for malevolent components to forge replica histories of benign servers; in conjunction with classification
rules (see Section 4.3.3), this ensures that benign servers only accept requests conditioned on the latest
complete object version.

Concurrency and repair. Only one update of a specific object version can complete successfully. As
such, concurrent accesses of an object may fail and result in replica histories at different servers that have
a different latest candidate. In such a situation, a client must bring the servers into a consistent state. To
do so, a client performs repair.

Repair consists of a sequence of two special operations: first a barrier is performed, and then a copy is
performed. Barrier candidates have no data associated with them and so are safe for servers to accept
during periods of contention. Indeed, if contention is indicated by the conditioned-on OHS sent to a
server, the server can only accept a barrier candidate. Barrier operations allow clients to safely advance
logical time in the face of contention; barriers prevent operations with earlier timestamps from
completing. Once sufficient servers have accepted barriers, all contending operations have been
suppressed. At this point the client can perform a copy operation. The copy operation copies the latest
object version prior to the barrier forward in logical time. Such an object version is either the result of one
of the contending operations that triggered repair or the object version these operations conditioned on. In
the former case, none of the contending operations was successful, and in the latter case, one of the
contending operations was successful. Once a copy operation successfully completes, then it is possible
for another update or query to be performed.

Classification of the OHS dictates whether or not repair is necessary and, if so, whether a barrier or copy
must be performed. Since both clients and servers base their actions on the OHS, both perform the action
dictated by classification.

In the face of contention, clients may have to repeatedly perform barrier and copy operations: different
clients could be copying different repairable candidates forward, never completing the copy operation.
Client backoff is relied upon to promote progress when there is such contention. Since servers always
return their latest replica history to the client, the client can, after updating its object history set, observe
the effect of its operation.

Non-preferred quorum access. To be efficient, clients normally access an object via the object’s
preferred quorum. If a client accesses a non-preferred quorum, some servers that receive requests may not
have the conditioned-on object version. In such a scenario, the server must object sync to retrieve the
conditioned-on object version. The sync-server requests the needed object data from host-servers. The
replica histories in the conditioned-on OHS provide the sync server with information about which other
servers are host-servers. Responses from at least b + 1 host-servers are required for the sync-server to
validate that the data it receives is correct.

4.3.3 Classification and Constraints
In an asynchronous system with failures, clients can only wait for a subset of servers to reply. As such,
object history sets are a partial observation of the global system state. Based on these partial observations,
the latest candidate is classified as complete, repairable, or incomplete. With perfect global information, it
would be possible to directly observe whether or not the latest candidate is established. An established
candidate is one that is accepted at all of the benign servers in some quorum. Constraints on the quorum
system, in conjunction with classification rules, ensure that established candidates are classified as
repairable or complete. In turn, this ensures that updates are invoked on the latest object version.

 44

Repairing a candidate, i.e., performing a barrier and then copying the candidate, is a fundamental aspect
of the Q/U protocol. To allow us to state the classification rules and quorum intersection properties
regarding repair in the Q/U protocol, we define repairable sets. Each quorum Q ∈ Q defines a set of
repairable sets R (Q) ⊆ 2Q. Given a set of server responses S that share the same candidate, the
classification rules for that candidate are as follows:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⊆
∈∈∃

∧∉∈∀
⊆∈∃

=

otherwise.
),

: (
) : (if

 : if

)(classify

incomplete
SR

(Q), RQ
SQQrepairable

SQQcomplete

S R Q
Q

Q

 (4.1)

Constraints on the quorum system that we require are as follows:

 : ØT Q Q T ;∀ ∃ ∩ = (4.2)

 ;\ :)(; ; , B Q QRQR BQQ jiiji ∩⊆∈∃∈∀∈∀ RBQ (4.3)

.:)(,,, BRQQRBQQ ijji ⊄∩∈∀∈∀∈∀ RBQ (4.4)

Constraint (4.2) ensures that operations at a quorum may complete in an asynchronous system. Constraint
(4.3) ensures that some repairable set of an established candidate is contained in every other quorum. This
constraint ensures that an established candidate is always classified as repairable or complete. For
example, if a candidate is established at quorum Qi, then a subsequent quorum access to Qj is guaranteed
to observe a repairable set R of Qi despite any malevolent servers.

A candidate that, in some execution, could be classified as repairable is a potential candidate.
Specifically, a potential candidate is one that is accepted at all of the benign servers in some repairable
set. Constraint (4.4) ensures that an established candidate intersects a potential candidate at at least one
benign server. This constraint ensures that at most one of any concurrent updates in the Q/U protocol
establishes a candidate and that, if a candidate is established, no other concurrent updates yield a potential
candidate. The logic that dictates which type of operation (method, barrier, or copy) must be performed is
intimately connected with the classification rules and with the quorum system constraints. The constraints
allow for multiple potential candidates. As such, there could be multiple distinct potential candidates
conditioned on the same object version. However, if there are any potential candidates, constraint (4)
precludes there from being any established candidates. Since none of these potential candidates can ever
be established, the Q/U protocol requires barriers to safely make progress. Since barriers do not modify
object state, they can be accepted at servers if the latest candidate is classified as incomplete or repairable.
Once a barrier is established, it is safe to copy the latest object version forward (whether it is a potential
candidate or an established candidate). And, if the copy establishes a candidate, then the corresponding
object version can be conditioned on.

Classification and threshold quorums. Many quorum constructions can be used in conjunction with the
Q/U protocol (e.g., those in [Malkhi98a, Malkhi00a]). We have implemented threshold (majority) quorum
constructions and recursive threshold quorum constructions from [Malkhi00a]. However, since the focus
of this portion of our research is on fault-scalability, we focus on the smallest possible threshold quorum
construction for a given server fault model.

For the remainder of this section, we consider a threshold quorum system in which all quorums Q ∈ Q are
of size q, all repairable sets R ∈ R (Q) are of size r, all faulty server sets T ∈ T are of size t, all malevolent

 45

server sets B ∈ B are of size b, and the universe of servers is of size n. In such a system, (4.2) implies that
q + t ≤ n, (4.3) implies that 2q – b – n ≥ r, and (4.4) implies that q+r – n > b. Rearranging these
inequalities allows us to identify the threshold quorum system of minimal size given some t and b:

n = 3t + 2b + 1;

q = 2t + 2b + 1;

r = t + b + 1.

As such, if b = t, then n = 5b + 1, q = 4b + 1, and r = 2b + 1. For example, if b = 1, then n = 6, q = 5, and r
= 3. If b = 4, then n = 21, q = 17, and r = 9. For such a threshold quorum system, classification is based on
the order of the candidate. The order is simply the number of servers that reply with the candidate. (This
is illustrated in Figure 4.2.) The classification rules (1) for threshold quorums are as follows:

⎪
⎩

⎪
⎨

⎧
<≤

≤
=

otherwise.
, if

, if
)(classify

incomplete
qOrderrrepairable

Orderqcomplete
Order (4.5)

4.3.4 Q/U Protocol Pseudocode
Figure 4.3 shows the pseudo-code for the Q/U protocol for a single object. To simplify the pseudo-code,
it is written especially for threshold quorums. The symbols used are summarized in the caption.
Structures, enumerations and types used in the pseudo-code are given on lines 100-107. The definition of
a Candidate includes the conditioned-on timestamp LTCO, even though it can be generated from LT.OHS.
It is included because it clearly indicates the conditioned-on object version. The equality (=) and less than
(<) operators are well-defined for timestamps; less than is based on comparing Time, BarrierFlag (with
FALSE < TRUE), ClientID, Operation (lexigraphic comparison), and then OHS (lexigraphic comparison).

Clients initialize their object history set to a well-known value (line 200). Two example methods for a
simple counter object are given: a query c_fetch and an update c_increment. The implementation of
these two functions are similar, the only difference being the definition of the operation in each function
(lines 300 and 400). First, requests based on the operation are issued to a quorum of servers (line 301).
The OHS passed to c_quorum_rpc is the clients cached OHS. If this OHS is not current, servers reject
the operation and return their latest replica history, in an effort to make the client's OHS current. If the
operation is accepted at the quorum of servers (line 302), the function returns. Otherwise, the client goes
into a repair and retry cycle until the operation is accepted at a quorum of servers (lines 302-306).

The details of the function c_quorum_rpc are elided; it issues requests to the preferred quorum of servers
and, if necessary, probes additional servers until a quorum of responses is received. Because of the crash-
recovery failure model and unreliable channels, c_quorum_rpc repeatedly sends requests until a quorum
of responses is received. Server responses include a status (success or failure), an answer, and a replica
history (see lines 1008, 1021, and 1030 of s_request). From the quorum of responses, those that indicate
success are counted to determine the order of the candidate. The answer corresponding to the candidate is
also identified, and the object history set is updated with the returned replica histories.

If an operation does not successfully complete, then repair is performed. Repair involves performing
barrier and copy operations until classification identifies a complete object version that can be
conditioned on. The function c_repair performs repair. To promote progress, backoff is called (line 502,
pseudo-code not shown). Note that an operation that does not complete because its conditioned-on OHS
is not current may not need to perform repair: after a client updates its OHS with server responses,
classification may indicate that the client perform a method. This happens if a client's cached OHS is out
of date and the object is accessed contention-free. Classification of the OHS dictates whether a barrier or

a copy is performed. In both cases, the client issues a c_quorum_rpc with the OHS. Once a copy
successfully completes, a method is allowed to be performed and repair returns.

structures, types, & enumerations:
100: Class ∈ {QUERY, UPDATE} /* Enumeration. */

s_initialize() : /* Initialize server s. */
900: s.RH := {〈0, 0〉}

 46

Figure 4.3: Query/Update pseudo-code. Client functions are prefixed with c_ and server functions with s_. The
following symbols are used in the pseudo-code: s (server), U (the universe of servers), OHS (object history set), RH
(replica history), α (authenticator), LT (timestamp), LTCO (conditioned-on timestamp), 0 (initial logical time), ⊥ (null
value), q (the threshold for classifying a candidate complete), and r (the threshold for classifying a candidate
repairable).

101: Type ∈ {METHOD, COPY, BARRIER} /* Enumeration. */
102: Operation ≡ 〈Method, Class,Argument〉
103: LT ≡ 〈Time, BarrierFlag, ClientID, Operation,OHS〉
104: Candidate ≡ 〈LT, LTCO〉 /* Pair of timestamps. */
105: RH ≡ {Candidate} /* Ordered set of candidates. */
106: α ≡ HMAC[U] /* Array indexed by server. */
107: OHS ≡ 〈RH, α〉 [U] /* Array indexed by server. */

c_initialize() : /* Client initialization. */
200: ∀s ∈ U,OHS[s].RH := 〈0, 0〉,OHS[s].α := ⊥

c_ increment(Argument): /* Example update operation. */
300: Operation := 〈increment, UPDATE,Argument,
301: 〈Answer, Order,OHS〉 := c_quorum_ rpc(Operation,OHS)
302: while (Order < q) do
303: /* Repair and retry update until candidate established. */
304: c_repair(OHS)
305: 〈Answer, Order,OHS〉 := c_quorum rpc(Operation,OHS)
306: end while
307: return (〈Answer〉)

c_fetch(): /* Example query operation. */
400: Operation := 〈fetch, QUERY, ⊥〉
401: 〈Answer, Order,OHS〉 := c_quorum_ rpc(Operation,OHS)
402: while (Order < q) do
403: c_repair(OHS)
404: 〈Answer, Order,OHS〉 := c_quorum rpc(Operation,OHS)
405: end while
406: return (〈Answer〉)

c_repair(OHS): /* Deal with failures and contention. */
500: 〈Type, ⊥, ⊥〉 := classify(OHS)
501: while (Type ≠ METHOD) do
502: backoff() /* Backoff to avoid livelock. */
503: /* Perform a barrier or copy (depends on OHS). */
504: 〈⊥,⊥,OHS〉 := c_quorum_rpc(⊥,OHS)
505: 〈Type, ⊥, ⊥〉 := classify(OHS)
506: end while
507: return

c_quorum_rpc(Operation,OHS) : /* Quorum RPC. */
600: /* Eliding details of sending to/probing for a quorum. */
601: /* Get quorum of s_request(Operation,OHS) responses. */
602: /* For each response, update OHS[s] based on s.RH. */
603: /* Answer and Order come from successful responses. */
604: return (〈Answer, Order,OHS〉)

classify(OHS): /* Classify candidate in object history set. */
700: /* Determine latest object version and barrier version. */
701: ObjCand := latest_candidate(OHS, FALSE)
702: BarCand := latest_candidate(OHS, TRUE)
703: LTlat := latest_time(OHS)
704: /* Determine which type of operation to perform. */
705: Type := BARRIER /* Default operation. */
706: /* If an established barrier is latest, perform COPY. */
707: if (LTlat = BarCand.LT) ^ (order(BarCand,OHS) ≥ q)
708: then Type := COPY
709: /* If an established object is latest, perform METHOD. */
710: if (LTlat = ObjCand.LT) ^ (order(ObjCand,OHS) ≥ q)
711: then Type := METHOD
712: return (〈Type, ObjCand, BarCand〉)

order(Candidate,OHS) : /* Determine order of candidate. */
800: return (|{s ∈ U : Candidate ∈ OHS[s].RH}|)

901: ∀s? ∈ U, s.α[s?] := hmac(s, s?, s.RH)

s_request(Operation,OHS) : /* Handle request at server s. */
1000: Answer := ⊥ /* Initialize answer to return. */
1001: ∀s? ∈ U, if (hmac(s, s?,OHS[s?].RH) ≠ OHS[s?].α[s])
1002: then OHS[s?].RH := {〈0, 0〉} /* Cull invalid RHs. */
1003: /* Setup candidate based on Operation and OHS. */
1004: 〈Type, 〈LT, LTCO〉, LTcurrent〉 := s_setup(Operation,OHS)
1005: /* Eliding details of receiving same request multiple times. */
1006: /* Determine if OHS is current (return if not). */
1007: if (latest_time(s.RH) > LTcurrent)
1008: then reply(s, FAIL, ⊥, s. 〈RH, α〉)
1009: /* Retrieve conditioned-on object version. */
1010: if (Type ∈ {METHOD, COPY}) then
1011: Object := retrieve(LTCO)
1012: /* Object sync if object version not stored locally. */
1013: if ((Object = ⊥) ^ (LTCO > 0))
1014: then Object := object_sync(LTCO)
1015: end if
1016: /* Perform operation on conditioned-on object version. */
1017: if (Type = METHOD) then
1018: 〈Object,Answer〉 := /* Invoke method. */
1019: Operation.Method(Object, Operation.Argument)
1020: if (Operation.Class = QUERY)
1021: then reply(s, SUCCESS, Answer, s.〈RH, α〉)
1022: end if
1023: /* Update server state to include new object version. */
1024: atomic
1025: s.RH := s.RH ∪ {〈LT, LTCO〉}
1026: ∀s? ∈ U, s.α[s?] := hmac(s, s?, s.RH)
1027: store(LT, Object)
1028: /* Could prune replica history. */
1029: end atomic
1030: reply(s, SUCCESS, Answer, s. 〈RH, α〉)

s_setup(Operation,OHS) : /* Setup candidate. */
1100: 〈Type, ObjCand, BarCand〉 := classify(OHS)
1101: LTCO = ObjCand.LT
1102: LT.Time := latest_time(OHS).Time + 1
1103: LT.ClientID := ClientID
1104: LT.OHS := OHS
1105: if (Type = METHOD) then
1106: LT.BarrierFlag := FALSE
1107: LT.Operation := Operation
1108: LTcurrent := ObjCand.LT /* (= LTCO) cf. line 1101 */
1109: else if (Type = BARRIER) then
1110: LT.BarrierFlag := TRUE
1111: LT.Operation := ⊥
1112: LTcurrent := LT
1113: else
1114: LT.BarrierFlag := FALSE /* Type = COPY */
1115: LT.Operation := LTCO.Operation
1116: LTcurrent := BarCand.LT
1117: end if
1118: return (Type, 〈LT, LTCO〉, LTcurrent〉)

latest_candidate(OHS, BarrierFlag)
1200: /* Set of all repairable/complete objects (barriers). */
1201: CandidateSet := {Candidate : (order(Candidate,OHS) ≥ r)
1202: ^(Candidate.LT.BarrierFlag = BarrierFlag)}
1203: /* Repairable/complete Candidate with max timestamp. */
1204: Candidate := (Candidate : (Candidate ∈ CandidateSet)
1205: ^(Candidate.LT = max(CandidateSet.LT)))
1206: return (Candidate)

 47

The function classify classifies an object history set: it identifies what type of operation (method, barrier,
or copy) must be performed and the timestamps of the latest object and barrier versions. Clients and
servers both call classify: a client calls it to determine the action dictated by its cached OHS and a server
calls it to determine the action dictated by the conditioned-on OHS sent from a client. The function
latest_candidate determines the latest candidate that is classified as either repairable or complete in the
conditioned-on OHS is latest. It is called to identify the latest object version (line 701) and latest barrier
version (line 702). The function latest_time (pseudo-code not shown) is called to determine the latest
timestamp in the conditioned-on OHS. If the latest timestamp in the conditioned-on OHS is greater than
the timestamps of the latest object and barrier versions, then the latest candidate is incomplete and a
barrier must be performed (line 705). If the latest timestamp matches either the latest object or barrier
version, but it is not classified as complete, then a barrier is performed. If the latest candidate is a
complete barrier version, then a copy is performed (line 708). If the latest candidate is a complete object
version, then a query or update is performed, conditioned on it (line 711).

Server initialization illustrates how authenticators are constructed via the hmac function (line 901). Each
entry in an authenticator is an HMAC (keyed hash) over the server's replica history [Bellare96]. The two
servers passed into hmac identify the shared key for taking the HMAC.

The function s_request processes requests at a server. First, the server validates the integrity of the
conditioned-on OHS. Any replica histories with invalid authenticators are set to null. Next, the server
calls s setup to setup the candidate. It calls classify (line 1100) and sets various parts of the logical
timestamp accordingly. In performing classification on the OHS, the server determines whether to
perform a barrier, a copy, or a method operation. Given the setup candidate, the server determines if the
object history set is current. If it is, the server attempts to fetch (via retrieve on line 1011) the
conditioned-on object version from its local store. If it is not stored locally, the conditioned-on object
version is retrieved from other servers (via object_sync, pseudo-code not shown, on line 1014). For
queries and updates, the server invokes a method on the conditioned-on object version. If the method
invoked is a query, then the server returns immediately, because the server state is not modified. If the
method invoked is an update, then a new object version results. For update methods and for copy
methods, the server adds the new candidate to its replica history, updates its authenticator, and locally
stores (via store) the new object version indexed by timestamp. These three actions (lines 1025-1027) are
performed atomically to be correct in the crash-recovery failure model. Finally, the server returns the
answer and its updated replica history and authenticator.

4.3.5 Implementation Details
This section discusses interesting aspects of system design, as well as implementation details and
optimizations omitted from the pseudo-code. Cached object history set.

Clients cache object history sets of objects they access. After a client’s first access, the client performs
operations without first requesting replica histories. If the cached object history set is current, then the
operation completes in a single phase. If not, then a server rejects the operation and returns its current
replica history so that the client can make its object history set more current.

Optimistic query execution. If a client has not accessed an object recently (or ever), its cached OHS may
not be current. It is still possible for a query to complete in a single phase. Servers, noting that the
conditioned-on OHS is not current, invoke the query method on the latest object version they store. The
server, in its response, indicates that the OHS is not current, but also includes the answer for the query
invoked on the latest object version and its replica history. After the client has received a quorum of
server responses, it performs classification on its object history set. Classification allows the client to
determine if the query was invoked on the latest complete object version; if so the client returns the
answer.

 48

This optimization requires additional code in the function s_request, if the condition on line 1007 is true.
To optimistically execute the query, the server retrieves the latest object version in its replica history and
invokes the query on that object version (as is done on lines 1018 and 1019).

Quorum access strategy and probing. In traditional quorum-based protocols, clients access quorums
randomly to minimize per-server load. In contrast, in the Q/U protocol, clients access an object's preferred
quorum. Clients initially send requests to the preferred quorum. If responses from the preferred quorum
are not received in a timely fashion, the client sends requests to additional servers. Accessing a non-
preferred quorum requires that the client probe to collect a quorum of server responses. Servers contacted
that are not in the preferred quorum will likely need to object sync.

In our system, all objects have an ID associated with them. In the current implementation, a deterministic
function is used to map an object's ID to its preferred quorum. A simple policy of assigning preferred
quorums based on the object ID modulo n is employed. Assuming objects are uniformly loaded (and
object IDs are uniformly distributed), this approach uniformly loads servers.

The probing strategy implemented in the prototype is parameterized by the object ID and the set of
servers which have not yet responded. Such a probing strategy maintains locality of quorum access if
servers crash and disperses load among non-crashed servers.

Quorum-based techniques are often advocated for their ability to disperse load among servers and their
throughputs-scalability (e.g., [Naor98, Wool98, Malkhi00b]). Preferred quorums, because of the locality
of access they induce, do not share in these properties if all operations are performed on a set of objects
with a common preferred quorum. To address such a concern, the mapping between objects and preferred
quorums could be made dynamic. This would allow traditional load balancing techniques to be employed
that “migrate” loaded objects to distinct preferred quorums over time.

Inline repair. Repair requires that a barrier and copy operation be performed. Inline repair does not
require a barrier or a copy; it repairs a candidate “in place” at its timestamp by completing the operation
that yielded the candidate. Inline repair operations can thus complete in a single round trip. Inline repair is
only possible if there is no contention for the object. Any timestamp in the object history set greater than
that of the repairable candidate indicates contention. A server processes an inline repair request in the
same manner as it would have processed the original update for the candidate (from the original client
performing the update). Inline repair can also be performed on barrier candidates. Inline repair is useful in
the face of server failures that lead to non-preferred quorum accesses. The first time an object is accessed
after a server in its preferred quorum has failed, the client can likely perform inline repair at a non-
preferred quorum.

Handling repeated requests at the server. A server may receive the same request multiple times. Two
different situations lead to repeated requests. The crash-recovery failure model requires clients to
repeatedly send requests to ensure a response is received. As such, servers may receive the same request
from the same client multiple times. Additionally, inline repair may lead to different clients (each
performing inline repair of the same candidate) sending the same request to the server. Regardless of how
many times a server receives a requests, it must only invoke the method on the object once. Moreover, the
server should respond to a repeated request in a similar manner each time. As such, it is necessary for the
server to store the answer to update operations with the corresponding object version. This allows a server
to reply with the same answer each time it receives a repeated request. Before checking if the
conditioned-on OHS is current, the server checks to determine if a candidate is already in its replica
history with the timestamp it setup (cf. line 1005). If so, the server retrieves the corresponding answer and
returns immediately.

Retry and backoff policies. Update-update concurrency among clients leads to contention for an object.
Clients must backoff to avoid livelock. A random exponential backoff policy is implemented (cf.
[Chockler01]). Update-query concurrency does not necessarily lead to contention. A query concurrent to

 49

a single update may observe a repairable or incomplete candidate. In the case of the former, the client
performs an inline repair operation; such an operation does not contend with the update it is repairing
(since servers can accept the same request multiple times). In the case of the latter, additional client logic
is required, but it is possible to invoke a query on the latest established candidate, in spite of there being
later incomplete candidates. On the client-side, after a query operation is deemed to have failed,
additional classification is performed. If classification identifies that all of the candidates with timestamps
later then the latest established candidate are incomplete, then the answer from invoking the query on the
established candidate is returned. This situation can arise if an update and query are performed
concurrently. Because of inline repair and this optimization, an object that is updated by a single client
and queried by many other clients does not ever require barriers, copies, or backoff.

Object syncing. To perform an object sync, a server uses the conditioned-on object history set to identify
b+1 servers from which to solicit the object state. Like accessing a preferred quorum, if b+1 responses are
not forthcoming (or do not all match) additional servers are probed.

It is possible to trade-off network bandwidth for server computation: only a single correct server need
send the entire object version state and other servers can send a collision-resistant hash of the object
version state. A different approach is to include the hash of the object state in the timestamp. This requires
servers to take the hash of each object version they create. However, it allows servers to contact a single
other server to complete object syncing or for the object state to be communicated via the client.

Authenticators. Authenticators consist of n HMACs, one for each server in the system. Authenticators
are taken over the hash of a replica history, rather than over the entire replica history. The use of n
HMACs in the authenticator, rather than a digital signature, is based on the scale of systems currently
being evaluated. The size and computation cost of digital signatures do not grow with n. As such, if n
were large enough, the computation and network costs of employing digital signatures would be less than
that of HMACs.

Compact timestamps. The timestamps in the pseudocode are quite large, since they include the operation
and the object history set. In the implementation, a single hash over the operation and the object history
set replaces these elements of logical timestamps. The operation and object history set are necessary to
uniquely place a specific operation at a single unique point in logical time. Replacing these elements with
a collision resistant hash serves this purpose and improves space-efficiency.

Compact replica histories. Servers need only return the portion of their replica histories with timestamps
greater than the conditioned-on timestamp of the most recent update accepted by the server. As such, a
server prunes its replica history based on the conditioned-on timestamp after it accepts an update request.
(Although pruning pseudocode is not shown, pruning would occur on line 1028.) In the common case, the
replica history contains two candidates: one for the latest object version and one for the conditioned-on
object version. Failures and concurrency may lead to additional barrier and incomplete candidates in the
replica history.

Object versions corresponding to candidates pruned from a server's replica history could be deleted.
Doing so would reclaim storage space on servers. However, deleting past object versions could make it
impossible for a server to respond to slow repeated requests from clients and slow object sync requests
from other servers. As such, there is a practical trade-off between reclaiming storage space on servers and
ensuring that clients do not need to abort operations.

Malevolent components. As presented, the pseudo-code for the Q/U protocol ensures safety, but not
progress, in the face of malevolent components. Malevolent components can affect the ability of correct
clients to make progress. However, the Q/U protocol can be modified to ensure that isolated correct
clients can make progress.

 50

Malevolent clients may not follow the specified backoff policy. For contended objects, this is a form of
denial-of-service attack. However, additional server-side code could rate limit clients.

Malevolent clients may issue updates only to subsets of a quorum. This results in latent work in the
system, requiring correct clients to perform repair. Techniques such as lazy verification [Abd-El-
Malek05a], in which the correctness of client operations is verified in the background and in which limits
are placed on the amount of unverified work a client may inject in the system, can bound the impact that
such malevolent clients have on performance.

A malevolent server can return an invalid authenticator to a client. Note that a client cannot validate any
HMACs in an authenticator and each server can only validate a single HMAC in an authenticator. On line
1002, servers cull replica histories with invalid authenticators from the conditioned-on OHS. Servers
return the list of replica histories (i.e., the list of invalid authenticators) culled from the conditioned-on
OHS to the client. A server cannot tell whether a malevolent client or server corrupted the authenticator.
A malevolent server can also return lists of valid authenticators to the client, indicating they are invalid. If
a malevolent server corrupts more than b HMACs in its authenticator, then a client can conclude, from the
responses of other servers, that the server is malevolent and exclude it from the set of servers it contacts.
If a malevolent server corrupts fewer than b HMACs in its authenticator, then a client can conclude only
that some servers in the quorum contacted are malevolent. This is sufficient for the client to solicit more
responses from additional servers and make progress.

A malevolent server can reject a client update for not being current by forging a candidate with a higher
timestamp in its replica history. Due to the constraints on the quorum system and the classification rules,
malevolent servers cannot forge a potential or established candidate: any forged candidate is classifiable
as incomplete. As such, the client must perform repair (i.e., a barrier then a copy). Consider a client acting
in isolation. (Recall that contending clients can lead to justifiably rejected updates.) If an isolated client
has its update accepted at all benign servers in a quorum, it by definition establishes a candidate (even
though the client may not be able to classify the candidate as complete). Given that a server rejected its
update, the client initiates repair with a barrier operation. Malevolent servers can only reject the isolated
client's barrier operation by forging a barrier candidate with a higher timestamp. Any other action by the
malevolent server is detectable as incorrect by the client. The Q/U protocol, as described in the
pseudocode, allows a malevolent server to keep generating barriers with higher timestamps. To prevent
malevolent servers from undetectably repeatedly forging barrier candidates, classification is changed so
that any barrier candidate not classified as complete is inline repaired. This bounds the number of barriers
that can be accepted before a copy must be accepted to be the number of possible distinct incomplete
candidates in the system (i.e., n). With such a modification, to remain undetected, a malevolent server
must either accept the copied candidate or not respond to the client; either action allows the client to make
progress. Since only potential candidates can be copied forward and potential candidates must intersect
established candidates, malevolent servers cannot undetectably forge a copied candidate (given an
established candidate prior to the barriers).

In summary, with the modifications outlined here, the Q/U protocol can ensure that isolated clients make
progress in spite of malevolent components.

Pseudo-code and quorums. Extended pseudo-code is available in a companion technical report [Abd-El-
Malek05b]. The extended pseudo-code includes optimistic query execution, additional client-side
classification for queries to reduce query-update contention, inline repair of value candidates and barrier
candidates, handling repeated requests at the server, pruning replica histories, deleting obsolete object
versions, and object syncing.

The pseudo-code is tailored for threshold quorums to simplify its presentation. For general quorums that
meet the constraints given in 4.3.3, changes to the pseudo-code are localized. The functions
c_quorum_rpc and order must change to handle general quorums rather than threshold quorums. Any

 51

tests of whether a candidate is repairable or complete must also change to handle general quorums (e.g.,
lines 302, 402, 707, 710, and 1201).

4.3.6 Example Q/U Protocol Execution
An example execution of the Q/U protocol is given in Table 4.1. The caption explains the structure of,
and notation used in, the table. The example is for an object that exports two methods: get (a query) and
set (an update). The object can take on four distinct values (♣,♦,♥,♠) and is initialized to ♥. The server
configuration is based on the smallest quorum system for b = 1. Clients perform optimistic queries for the
get method; the conditioned-on OHS sent with the set method is not shown in the table. The sequence of
client operations is divided into four sequences of interest by horizontal double lines. For illustrative
purposes, clients X and Z interact with the object’s preferred quorum (the first five servers) and Y with a
non-preferred quorum (the last five servers).

The first sequence demonstrates failure- and concurrency-free execution: client X performs a get and set
that each complete in a single phase. Client Y performs a get in the second sequence that requires repair.
Since there is no contention, Y performs inline repair. Server s5 performs object syncing to process the
inline repair request.

In the third sequence, concurrent updates by X and Y are attempted. Contention prevents either update
from completing successfully. At server s4, the set from Y arrives before the set from X. As such, it
returns its replica history {〈3,1〉,〈1,0〉} with FAIL. The candidate 〈3,1〉 in this replica history dictates that
the timestamp of the barrier be 4b. For illustrative purposes, Y backs off. Client X subsequently completes
barrier and copy operations.

In the fourth sequence, X crashes during a set operation and yields a potential candidate. The remaining
clients Y and Z perform concurrent get operations at different quorums; this illustrates how a potential
candidate can be classified as either repairable or incomplete. Y and Z concurrently attempt a barrier and
inline repair respectively. In this example, Y establishes a barrier before Z's inline repair requests arrive at
servers s3 and s4. Client Z aborts its inline repair operation. Subsequently, Y completes a copy operation
and establishes a candidate 〈8, 5〉 that copies forward the established candidate 〈5; 2〉 Notice that the
replica histories returned by the servers in response to the get requests are pruned. For example, server s0
returns {〈6; 5〉; 〈5; 2〉}, rather than {〈6, 5〉, 〈5, 2〉, 〈4b, 2〉, 〈2, 1〉, 〈1, 0〉, 〈0, 0〉}, because the object history
set sent by X with set operation 〈6, 5〉 proved that 〈5, 2〉 was established.

4.3.7 Multi-object Updates
We promote the decomposition of services into objects to promote concurrent non-contending accesses.
The Q/U protocol allows some updates to span multiple objects. A multi-object update atomically updates
a set of objects. To perform such an update, a client includes a conditioned-on OHS for each object being
updated. The set of objects and each object’s corresponding conditioned-on OHS, are referred to as the
multi-object history set (multi-OHS). Each server locks its local version of each object in the multi- OHS
and validates that each conditioned-on OHS is current. The local locks are acquired in object ID order to
avoid the possibility of local deadlocks. Assuming validation passes for all of the objects in the multi-
OHS, the server accepts the update for all the objects in the multi-OHS simultaneously.

So long as a candidate is classified as complete or incomplete, no additional logic is required. However,
to repair multi-object updates, clients must determine which objects are in the multi-OHS. As such, the
multi-OHS is included in the timestamp. Note that all objects updated by a multi-object update have the
same multi-OHS in their timestamp.

To illustrate multi-object repair, consider a multi-object update that updates two objects, oa and ob. The
multi-object update results in a candidate for each object, ca and cb respectively. Now, consider a client
that queries oa and classifies ca as repairable. To repair ca, the client must fetch a current object history for
ob because ob is in the multi-OHS of ca. If ca is in fact established, then cb is also established and there

 52

could exist a subsequent established candidate at ob that conditions on cb. If ca is not established, then cb
also is not established and subsequent operations at ob may preclude cb from ever being established (e.g.,
a barrier and a copy that establishes another candidate at ob with a higher timestamp than cb). The former
requires that ca be reclassified as complete. The latter requires that ca be reclassified as incomplete.

Operation s0 s1 s2 s3 s4 s5 Result
Initial system 〈0,0〉,♥ 〈0,0〉,♥ 〈0,0〉,♥ 〈0,0〉,♥ 〈0,0〉,♥ 〈0,0〉,♥
X completes get() {0},♥ {0},♥ {0},♥ {0},♥ {0},♥ 〈0,0〉 complete, return ♥
X completes set(♣) 〈1,0〉,♣ 〈1,0〉,♣ 〈1,0〉,♣ 〈1,0〉,♣ 〈1,0〉,♣ 〈1,0〉 established
Y begins get()… {1,0},♣ {1,0},♣ {1,0},♣ {1,0},♣ {0},♥ 〈1,0〉 repairable
…Y performs inline {1,0},♣ 〈1,0〉 complete, return ♣
X attempts set(♦)…
Y attempts set(♥)

〈2,1〉,♦ 〈2,1〉,♦
FAIL

〈2,1〉,♦
FAIL

〈2,1〉,♦
FAIL

FAIL
〈3,1〉,♥

〈3,1〉,♥

〈2,1〉 potential
Y backs off

…X completes barrier 〈4b,2〉,⊥ 〈4b,2〉,⊥ 〈4b,2〉,⊥ 〈4b,2〉,⊥ 〈4b,2〉,⊥ 〈4b,2〉 established
…X completes copy 〈5,2〉,♦ 〈5,2〉,♦ 〈5,2〉,♦ 〈5,2〉,♦ 〈5,2〉,♦ 〈5,2〉 established
X crashes in set(♠) 〈6,5〉,♠ 〈6,5〉,♠ 〈6,5〉,♠ 〈6,5〉 potential
Y begins get()…
Z begins get()…

{6,5},♠

{6,5},♠
{6,5},♠

{6,5},♠
{6,5},♠

{5,4b,2,1},♦
{5,4b,2,1},♦

{5,4b,2,1},♦
{5,4b,2,1},♦

{3,1},♥ 〈6,5〉 inc., 〈5,2〉 rep.
〈6,5〉 repairable

…Y completes barrier
…Z attempts inline

 〈7b,5〉,⊥ 〈7b,5〉,⊥ 〈7b,5〉,⊥
FAIL

〈7b,5〉,⊥
FAIL

〈7b,5〉,⊥ 〈7b,5〉 established
Z backs off

…Y completes copy 〈8,5〉,♦ 〈8,5〉,♦ 〈8,5〉,♦ 〈8,5〉,♦ 〈8,5〉,♦ 〈8,5〉 est., return ♦

Table 4.1: Example Q/U protocol execution. Operations performed by three clients (X, Y, and Z) are listed in the left
column. The middle columns list candidates stored by and replies (replica histories or status codes) returned by six
benign servers (s0,…,s5). The right column lists if updates yield an established or potential candidate (assuming all
servers are benign) and the results of classification for queries. Time “flows” from the top row to the bottom row.
Candidates are denoted 〈LT, LTCO〉. Only LT.Time with “b” appended for barriers is shown for timestamps (i.e., client
ID, operation, and object history set are not shown). Replica histories are denoted {LT3, LT2, …}. Only the candidate's
LT, not the LTCO, is listed in the replica history.

Such reclassification of a repairable candidate, based on the objects in its multi-OHS, is called
classification by deduction. If the repairable candidate lists other objects in its multi-OHS, then
classification by deduction must be performed. If classification by deduction does not result in
reclassification, then repair is performed. Repair, like in the case of individual objects, consists of a
barrier and copy operation. The multi-OHS for multi-object barriers and multi-object copies have the
same set of objects in them as the multi-OHS of the repairable candidate. Because multi-object operations
are atomic, classification by deduction cannot yield conflicting reclassifications: either all of the objects
in the multi-OHS are classified as repairable, some are classified complete (implying that all are
complete), or some are classified incomplete (implying that all are incomplete).

Multi-object updates may span objects with different preferred quorums. The preferred quorum for one of
the objects involved is selected for the multi-object update. In our implementation, we use the preferred
quorum of the highest object ID in the multi-OHS. As such, some servers will likely have to object sync
for some of the objects. Moreover, some of the candidates a multi-object write establishes may be outside
of their preferred quorums. If there is no contention, such candidates are repairable at their preferred
quorum via inline repair.

4.3.8 Correctness
This section discusses, at a high level, the safety and liveness properties of the Q/U protocol. In the
companion technical report [Abd-El-Malek05b], the safety and liveness of the Q/U protocol is discussed
in more detail, extended pseudo-code is provided, and a proof sketch of safety is given for a variant of the
Q/U protocol, the Read/Conditional-Write protocol.

In the Q/U protocol, operations completed by correct clients are strictly serializable [Bernstein87].
Operations occur atomically, including those that span multiple objects, and appear to occur at some point
in time between when the operation begins and some client observes its effect. If the Q/U protocol is used

 53

only to implement individual objects, then correct clients’ operations that complete are linearizable
[Herlihy90].

To understand how the Q/U protocol ensures strict serializability, consider the conditioned-on chain: the
set of object versions that are found by traversing back in logical time from the latest established
candidate via the conditioned-on timestamp. Every established object version is in the conditioned-on
chain and the chain goes back to the initial candidate 〈0, 0〉. The conditioned-on chain induces a total
order on update operations that establish candidates, which ensures that all operations are strictly
serializable. The conditioned-on chain for the example system execution in Table 4.1 is 〈8, 5〉 → 〈5, 2〉 →
〈2, 1〉 → 〈1, 0〉 → 〈0, 0〉. Given the crash-recovery server fault model for benign servers, progress cannot
be made unless sufficient servers are up. This means that services implemented with the Q/U protocol are
not available during network partitions, but become available and are correct once the network merges.
The liveness property of the Q/U protocol is fairly weak: it is possible for clients to make progress
(complete operations).

Under contention, operations (queries or updates) may abort so it is possible for clients to experience
livelock. In a benign execution—an execution without malevolent clients or servers—the Q/U protocol is
obstruction-free [Herlihy03]: an isolated client can complete queries and updates in a finite number of
steps. The extensions sketched in Section 4.3.5 also allow an isolated client to complete queries and
updates in a finite number of steps in an execution with malevolent servers.

4.4 Evaluation
This section evaluates the Q/U protocol as implemented in our prototype library. First, it compares the
fault-scalability of a counter implemented with the Q/U protocol and one implemented with the publicly
available2 Byzantine fault-tolerant, agreement-based BFT library [Castro02]. Second, it quantifies the
costs associated with the authenticator mechanism and with non-optimal object accesses in the Q/U
protocol. Third, it discusses the design and performance of an NFSv3 metadata service built with the Q/U
protocol.

4.4.1 Experimental Setup
The Q/U protocol prototype is implemented in C/C++ and runs on both Linux and Mac OS X. Client-
server communication is implemented via RPCs over TCP/IP sockets. MD5 cryptographic hashes are
employed [Rivest92]; the authors recognize that the MD5 hash is showing its age [Wang04], however its
use facilitates comparisons with other published results for BFT. All experiments are performed on a rack
of 76 Intel Pentium 4 2.80 GHz computers, each with 1GB of memory, and an Intel PRO/1000 NIC. The
computers are connected via an HP ProCurve Switch 4140gl with a specified internal maximum
bandwidth of 18.3 Gbps (or 35.7 mpps). The computers run Linux kernel 2.6.11.5 (Debian 1:3.3.4-3).
Experiments are run for 30 seconds and measurements are taken during the middle 10 seconds;
experiments are run 5 times and the mean is reported. The standard deviation for all results reported for
the Q/U prototype is less than 3% of the mean (except, as noted, for the contention experiment). The
working sets of objects for all experiments fit in memory, and no experiments incur any disk accesses.

4.4.2 Fault-scalability
We built a prototype counter object with the Q/U protocol and with the BFT library. The increment
method, an update (read-write operation in BFT terminology), increments the counter and returns its new
value. The fetch method, a query, simply returns the current value of the counter. A counter object,
although it seems simple, requires the semantics these two protocols provide to correctly increment the

2 http://www.pmg.lcs.mit.edu/bft/#sw

 54

current value. Moreover, the simplicity of the
object allows us to focus on measuring the
inherent network and computation costs of these
Byzantine fault-tolerant protocols.

We measure the throughput (in requests per
second) of counter objects as the number of
malevolent servers tolerated increases. Since
both the Q/U protocol and BFT implement
efficient, optimistic queries (read-only in BFT
terminology), we focus on the cost of updates.
These experiments are failure-free. For the Q/U-
based counter, clients access counter objects via
their preferred quorum and in isolation (each

client accesses a different set of counter objects). We ran a single instance of the BFT-based counter so
that there is a single primary replica that can make effective use of batching (an optimization discussed
below). As such, this experiment compares best case performance for both protocols.

Figure 4.4 shows the fault-scalability of the Q/U-based and BFT-based counters. The throughput of
increment operations per second, as the number of server faults tolerated increases from b = 0 to b = 5, is
plotted. No data point is shown for the BFT-based counter at b = 0, a single server that tolerates no
failures, because we had difficulties initializing the BFT library in this configuration. The increase in
throughput from b = 0 to b = 1 for the Q/U-based counter is due to quorum throughput-scalability: at b =
1, each server processes only five out of every six update requests.

The data points shown in Figure 4.4 correspond to the peak throughput observed. To determine the peak
throughput, we ran experiments with one physical client, then three physical clients, and so on, until we
ran with thirty-three physical clients. Two client processes ran on each physical client; in all cases, this
was sufficient to load both the Q/U-based and BFT-based counters. The throughput plotted for each value
of b corresponds to that for the number of clients that exhibited the best throughput averaged over five
runs. The BFT-based counter is less well-behaved under load than the Q/U-based counter: for each value
of b, the performance of the BFT-based counter depends significantly on load. Throughput increases as
load is added until peak throughput is achieved, then additional load reduces the observed throughput
dramatically. For the Q/U-based counter, in contrast, peak throughput is maintained as additional load is
applied. Due to the behavior of BFT under load, we report the peak throughput rather than the throughput
observed for some static number of clients. The Q/U-based counter provides higher throughput than the
BFT-based counter in all cases. Both counters provide similar throughput when tolerating one or two
faults. However, because of its fault-scalability, the Q/U-based counter, provides significantly better
throughput than the BFT-based counter as the number of faults tolerated increases. When compared to the
BFT-based counter, the Q/U-based counter provides 1990 more requests per second at b = 1 and 12400
more requests per second at b = 5. As b is increased from 1 to 5, the performance of the Q/U counter
object degrades by 36%, whereas the performance of the BFT-based counter object degrades by 83%.

In BFT, server-to-server broadcast communication is required to reach agreement on each batch of
requests. In batching requests, BFT amortizes the cost of generating and validating authenticators over
several requests. For low values of b, batching is quite effective (fifteen or more requests per batch). As
the number of faults tolerated increases, batching becomes less effective (just a few requests per batch at
b = 5). Moreover, the cost of constructing and validating authenticators grows as the number of faults
tolerated increases. The cost of authenticators grows slower for BFT than for the Q/U protocol, since BFT
requires fewer servers to tolerate a given number of faults (as is illustrated in Figure 4.1, 3b + 1 rather
than 5b + 1 servers).

Figure 4.4: Fault-scalability.

0 1 2 3 4 5
0

5

10

15

20

25

30

Server faults tolerated (b)

T
hr

ou
gh

pu
t (

K
re

q/
s)

Q/U

BFT

 55

BFT uses multicast to reduce the cost of
server-to-server broadcast communication.
However, multicast only reduces the number
of messages servers must send, not how
many they must receive (and authenticate).
Since BFT employs multicast, all
communication is based on UDP. We believe
that the backoff and retry policies BFT uses
with UDP multicast are not well-suited to
high-throughput services.

4.4.3 Fault-scalability Details
Authenticators and fault-scalability. Figure
4.1 in Section 4.2 illustrates the analytic
expected throughput for the threshold
quorums employed in the Q/U protocol prototype: the throughput provided by a single server. Our
measurements for the Q/U-counter object in Figure 4.4 do not match that expectation. Throughput of the
Q/U-counter declines (slowly) as the number of faults tolerated increases beyond one. The decline is due
to the cost of authenticators.

As the number of faults tolerated increases, authenticators require more server computation to construct
and validate, as well as more server bandwidth to send and receive. At b = 1, it takes 5.6 µs to construct or
validate an authenticator, whereas at b = 5, it takes 17 µs. In Figure 4.5, we show the fault-scalability of
the Q/U protocol for two hypothetical settings: one in which authenticators are not used at all (the “No α”
line) and one in which HMACs require no computation to construct or validate (the “0-compute α” line).
Compare these results with the “Q/U” line (the line also shown in Figure 4.4). The results for No α
demonstrate the best fault-scalability that the Q/U protocol can achieve on our experimental
infrastructure. Dedicated cryptographic processors or additional processing cores could someday realize
the 0-compute α results. If the server computation required to construct and validate authenticators could
be offloaded, the Q/U protocol would exhibit near ideal faults-scalability.

Cached object history sets. Figure 4.5 also shows the cost of accessing objects for which a client has a
stale OHS or none at all. The difference between the “Q/U” and “Un-cached OHS” lines is the additional
round trip required to retrieve a current OHS. Even if the OHS must be read before performing an update,
the Q/U protocol exhibits faults-scalability. For a given service implemented with the Q/U protocol, the
usage pattern of objects will dictate whether most updates are based on a current cached OHS or not.

Non-preferred quorums. Accessing an object at a non-preferred quorum requires some servers to object
sync. To quantify the benefit that preferred quorums provide, we implemented a random quorum access
policy against which to compare. We measured the average response time for a single client process
performing increment operations on a single counter object. For the case of b = 1 with n = 6, the
response time using the preferred quorum access policy is 402 µs. Using the random quorum access
policy, the average client response time is 598 µs. Because of the small quorum system size, the random
policy issues updates to the quorum with the latest object version one in six times. For the other five in
six, it takes a server 235 µs to perform an object sync. In the prototype implementation, to perform such
an object sync if b = 1, a server retrieves the desired object version from two (b + 1) other servers.

We also measured the peak throughput provided as the number of faults tolerated increases. The Random
Quorum line in Figure 4.5 shows the results. Comparing the Random Quorum and Q/U lines, it is clear
that the locality of access afforded by the preferred quorum access policy provides much efficiency to the
Q/U protocol. As the number of faults tolerated increases, the cost of object syncing, given a random

Figure 4.5: Details of Q/U protocol fault-scalability.
×

+
+

14
15

b
b

0 1 2 3 4 5
0

5

10

15

20

25

30

35

Server faults tolerated (b)

T
hr

ou
gh

pu
t (

K
re

q/
s)

No α

0−compute α

Q/U

Uncached OHS

Random Quorum

 56

quorum access policy, increases for two reasons. First, the average number of servers that object sync
increases. Second, the number of servers that must be contacted to object sync increases.

Contention. Clients accessing an object concurrently may lead to contention in the Q/U protocol. We ran
a series of experiments to measure the impact of contention on client response time. In each of these
experiments, b = 1 and five clients perform operations. In all cases, one client performs increment update
operations to a shared counter object. In one set of experiments the other four clients perform fetch
operations, and in another set, the other four clients also perform increment operations. Clients retrieve
current replica histories before performing an increment operation; this emulates many distinct clients
without a cached OHS contending for the counter object. Within a set of experiments, the number of
contending clients that perform operations on the shared counter is varied from zero to four.

 Contending Clients
 0 1 2 3 4
fetch Isolated

Contending
320

-
331
348

329
336

326
339

-
361

increment Isolated
Contending

693
-

709
1210

700
2690

692
4930

-
11400

Table 4.2: Average response time in µs.

The number of isolated clients that perform operations on unshared counters is four minus the number of
contending clients. Five clients are used in each experiment so that the load on servers is kept reasonably
constant. The results of these experiments are reported in Table 4.2.

The fetch results demonstrate the effectiveness of the inline repair and optimistic query execution
optimizations: queries do not generate contention with a single concurrent update. The results of the
increment experiments show the impact of the backoff policy on response time. Our backoff policy starts
with a 1000 µs backoff period and it doubles this period after each failed retry. As contention increases,
the amount clients backoff, on average, increases. Not shown in Table 4.2, is that as update contention
increases, the variance in per client response time also increases. For example, the standard deviation in
client response time is 268 µs with one contending increment client and 4130 µs with four contending
increment clients.

4.4.4 Q/UNFSv3 Metadata Service
To explore a more complete service, we built a metadata service with the Q/U protocol. The Q/U-NFSv3
metadata service exports all namespace/directory operations of NFSv3. Two types of Q/U objects are
implemented: directory objects and attribute objects. Attribute objects contain the per-file information
expected by NFS clients. Directory attributes are stored in the directory object itself rather than in a
separate attribute object, since they are needed by almost all exported methods on directories. Directory
objects store the names of files and other directories. For each file in a directory, the directory object lists
the object ID of the attribute object for the file. The metadata service is intended to only service
namespace operations; this model of a metadata service separate from bulk storage is increasingly popular
(e.g., both Farsite [Adya02] and Pond/OceanStore [Rhea03] use this approach).

Table 4.3 lists the average response times for the operations that the Q/U-NFSv3 metadata service
exports. These results are for a configuration of servers that tolerates a single malevolent server (i.e., b =
1 and n = 6). The operation type (query or update) and the types of objects accessed are listed in the table.
The cost of a single-object query, relative to a single-object update, is illustrated by the difference in cost
between getattr and setattr. The cost of a multi-object update, relative to a single object update, is
illustrated by the difference in cost between create and setattr. Multi-object updates, such as create
operations, may span objects with different preferred quorums. For the create operation, the multi-object

 57

update is sent to the preferred quorum of the directory object. As such, the first access of the created
attribute object incurs the cost of an inline repair (if it does not share the directory object’s preferred
quorum).

Table 4.4 lists results of running the metadata-intensive PostMark benchmark [Katcher97] on a single
client for different fault-tolerances (from b = 0 to b = 5). PostMark is configured for 5000 files and 20000
transactions. Since Q/UNFSv3 only services namespace operations, file contents are stored locally at the
client (i.e., the read and append phases of PostMark transactions are serviced locally). The decrease from
b = 0 to b = 1 occurs because PostMark is single-threaded. As such, Q/U-NFSv3 incurs the cost of
contacting more servers (and of larger authenticators) but does not benefit from quorum throughput-
scalability. As with the counter object micro-benchmarks however, performance decreases gradually as
the number of malevolent servers tolerated increases.

Operation Type Objects Response Time (µs)
getattr
lookup
readlink
readdir
setattr
create
link
unlink
rename

query
query
query
query
update
update
update
update
update

attribute
directory
directory
directory
attribute

attr. & dir.
attr. & dir.
attr. & dir.

2 attr. & 2 dir.

570
586
563
586
624
718
690
686
780

Table 4.3: Q/U-NFSv3 metadata service operations.

Faults Tolerated (b) 0 1 2 3 4 5
Transactions/second 129 114 102 93 84 76

Table 4.4: Q/U-NFSv3 PostMark benchmark.

4.5 Conclusions
The Q/U protocol supports the implementation of arbitrary deterministic services that tolerate the
Byzantine failures of clients and servers. The Q/U protocol achieves efficiency by a novel integration of
techniques including versioning, quorums, optimism, and efficient use of cryptography. Measurements
for a prototype service built using our protocol shows significantly better fault-scalability (performance as
the number of faults tolerated increases) in comparison to the same service built using a popular
replicated state machine implementation. In fact, in contention-free experiments, its performance is better
at every number of faults tolerated: it provides 8% greater throughput when tolerating one Byzantine
faulty server, and over four times greater throughput when tolerating five Byzantine faulty servers. Our
experience using the Q/U protocol to build and experiment with a Byzantine fault-tolerant NFSv3
metadata service confirms that it is useful for creating substantial services.

 58

5 NESTED OBJECTS IN A BYZANTINE QUORUM-REPLICATED SYSTEM

5.1 Overview
This chapter presents the design and implementation of a framework to support Byzantine fault-tolerance
[Lamport82] in a distributed, object-based system. In modern object-based systems, it is commonplace
that objects are passed as arguments to and can invoke methods on other objects. A goal of our
framework is to support these natural models of object interaction seamlessly from the programmer’s
perspective, while utilizing object replication and Byzantine fault-tolerant method invocation protocols to
mask the Byzantine (arbitrary) failure of a limited number of replicas of each object.

The model of object interaction that our framework supports is motivated by that of Java remote objects.
A Java remote object is one that can be invoked from outside the Java Virtual Machine (JVM) in which it
resides, via a protocol called Remote Method Invocation (RMI). The client JVM of a remote object holds
a proxy for the remote object, called a stub, which implements the same interface as the remote object.
The client program can invoke methods on the remote object by invoking them on the stub, and can pass
the stub as a parameter to other, possibly remote, objects. Those objects that then hold the stub can invoke
methods on the remote object, as well. This mechanism thus provides location transparency for calls to
the remote object.

In this work, we consider a system we are implementing whereby a serializable Java object can be
dynamically exported outside the JVM in which it was created, and replicated to a number of other server
JVMs, yielding a distributed object. After this operation, the client JVM is left with a handle
(conceptually similar to a stub, but functionally different), again that implements the same interface as the
original object; see Figure 5.1(a). Method invocations on the handle are translated to method invocations
on a set (quorum [Malkhi98a]) of replicas for the distributed object. Like RMI stubs, handles can be
passed as parameters to method invocations, potentially on other objects that have been distributed in this
way, resulting in object nesting; see Figure 5.1(b). Those JVMs that hold a handle for the distributed
object are called clients; however, clients of one distributed object can be servers for other distributed
objects, so when we refer to a client or a server, it indicates the role in which it is participating at that
time.

With nested objects, it is no longer desirable to allow unfettered access to a distributed object by any
client that possesses a handle for that object. In particular, we cannot allow a single client replica to
perform arbitrary operations on another distributed object: doing so could result in duplicate method
invocations when other client replicas perform the same method invocation, and Byzantine-faulty client
replicas could corrupt the embedded object, from the application perspective, by invoking incorrect
methods on it. Instead, the central goals of our framework are to ensure that (i) only those method
invocations endorsed by correct replicas of the calling object are performed, and that (ii) the method
invocation protocol itself is robust to a limited number of Byzantine faulty client replicas and server
replicas.

For (i), we propose an authorization framework for nested method invocations. This framework
authorizes method invocations on distributed objects from single trusted clients as well as from quorums
of individually untrusted clients. When object o1 is passed to o2, authorization for quorums of o2’s replicas
to invoke o1 is transparently delegated with the use of delegation keys and certificates. For (ii), we
develop a new quorum based method invocation protocol that ensures linearizable [Herlihy90] object
invocations of method invocations at arbitrary depths, again despite Byzantine failures of a limited
number of replicas of each distributed object. This protocol makes no assumptions on message
transmission times, i.e. it is designed to function correctly in an asynchronous environment.

We have implemented our framework within a significant restructuring of the Fleet system [Malkhi01].
The initial Fleet system from which we began this implementation did not support nested objects

 59

a) distributed object components b) nested distributed objects

replicas
handles

client

servers

replicas
handles

client

servers

seamlessly, provided no tolerance for Byzantine client invocations, and did not implement an
authorization scheme. As such, our framework is a significant advance in this context.

5.2 Background
To our knowledge, the only prior system to support linearizable access to nested objects in the face of
Byzantine faults is Immune [Narasimhan99]. Immune takes a different approach in that it implements
every distributed object using state machine replication [Schneider90] with majority voting, in which
every method invocation is executed by every object replica. Nested method invocations are performed
with relative simplicity in the Immune system, as its use of Byzantine fault-tolerant atomic broadcast
(specifically [Kihlstrom01]) ensures that all client and server replicas receive every communication in the
same order. In contrast, our approach implements quorum-based access: each method invocation involves
accessing only a randomly selected quorum of replicas, which can be relatively small, e.g., ()bnO
replicas for a distributed object with n replicas and tolerating b Byzantine replica failures [Malkhi00b].
While offering improved scalability and load dispersion, the quorum approach introduces challenges not
present in the state machine approach, notably the absence of atomic multicast among all client and server
replicas to coordinate invocations. Finally, our authorization framework has no analog in Immune, which
permits any replicated object to invoke arbitrary methods on another replicated object.

Benign fault-tolerant nesting of transactions has previously been a topic of study in the context of
database systems [Moss81]. Nested transactions achieve concurrency atomicity in the form of
serializability [Moss86]. While necessary for transactional systems that must apply multiple operations on
potentially many objects, serializability is both non-local and blocking, thus requiring global coordination
and locking to enforce it. Serializability was recently studied in the context of JavaSpace transactions
[Busi01]; however, while there can be nested transactions in JavaSpaces, there is no analog to our nested
method invocations as JavaSpaces contain passive objects that can only be read and written, rather than
remote objects on which methods can be invoked. Linearizability, the form of concurrency atomicity that
we pursue in this work, provides concurrency atomicity of single operations performed on a single object
only [Herlihy90].

Though weaker than serializability, we have opted for linearizability for two reasons. First, returning to
the object sharing model that motivates our work, linearizability is the concurrency atomicity property
that is achieved by Java RMI (though not in a fault-tolerant way), provided that the remote object
processes requests sequentially. As such, our system will be suited to applications already utilizing that
model. Second, linearizability can be enforced locally, and avoids locking, which is problematic when a
node responsible for unlocking an object fails. Nevertheless, we intend to explore serializability in future
work.

Figure 5.1: Distributed objects.

 60

5.3 Authorization Framework
As discussed in Section 5.1, object nesting in combination with Byzantine failures requires that we depart
from a model in which simply possessing a handle for a distributed object is sufficient to invoke methods
on it. Otherwise, a faulty object replica which was given a handle for another object through servicing a
method invocation would then be able to invoke arbitrary methods on that object. Our goal is to allow the
creator of a distributed object to invoke methods on that object, and to delegate that authority to another
client object, which itself may be replicated in order to withstand the Byzantine failure of some of its
replicas. We anticipate that this delegation will most commonly occur automatically when a handle to one
distributed object is passed as a parameter to a method invocation on a second distributed object.

5.3.1 Assumptions
As discussed previously, the environment that we consider executes methods on a distributed object at a
quorum of its replicas, and the set of allowable quorums constitutes a quorum system for the distributed
object. For the purposes of the present section, we are not concerned with the structure of the quorum
system, except for one assumption: the quorum system is formed based on an assumed maximum number
b of its replicas that will suffer Byzantine failures. For example, it is necessary that each quorum be larger
than b, lest operations be performed at a quorum of only faulty servers, and it is also necessary that any b
failures leaves a quorum available, so that operations can be completed. Such quorum constructions can
be found in, e.g., [Malkhi98a, Malkhi00b].

We assume that communications to and from servers are protected using standard cryptographic
techniques. At a high level, our strategy will be to permit only a number of replicas of size b1 + 1 or
greater of a distributed object o1 to invoke methods on another distributed object o2. Here, b1 denotes the
number of replica failures that the quorum system for o1 was designed to survive. In this way, any
invocation by any replica of o1 that the correct replicas of o2 accept is corroborated by a correct replica of
o1. For the purposes of this section, we treat trusted individual clients that are permitted to invoke
methods on a distributed object, e.g., the creator of the object or another client to which it explicitly
passes the handle through an out-of-band mechanism, as a special case of a distributed object o1 with n1 =
1 replicas and b1 = 0 faults.

5.3.2 Delegation
The starting point for method invocation authorization is the principal that originally creates a distributed
object, i.e., the client that exports the object from its JVM to make a new distributed object. When the
distributed object is created, its creator generates a new private digital signing key S and corresponding
public verification key V (e.g., [Rivest78, Kravitz93, ANSI99]) and deploys V with each replica, as the
“root” key for the distributed object. The creator can optionally deploy additional root public keys with
each replica, though here we restrict our attention to a single root key.

The correct replicas of this distributed object will henceforth only permit method invocations bearing
digital signatures that can be verified with V, or for which the root key has delegated authority (perhaps
transitively). This delegation can occur in two ways. The most straightforward is explicit delegation by
the application, in which the object creator certifies a public key provided by another potential client as
being authorized to access the distributed object. This form of delegation closely follows that of, e.g.,
Gasser and McDermott [Gasser90], and will not be detailed here. The second and more complex form of
delegation occurs implicitly, when objects are nested. To support this form of delegation, each handle
contains a private signature key called the handle key—the handle key for the initial handle is the private
root key of the handle—plus a set of statements (certificates) regarding the keys for which that handle key
bears authority. To fully describe how delegation works, we need to consider two cases: one in which a
handle for one distributed object is passed as a parameter into a method call on another distributed object,
and one in which a method call on one distributed object returns a handle of another distributed object.

 61

a) before nesting b) after nesting and delegation

handles
replicas

Si
1 Si

2

V i
1 V i

1 V i
1 V i

1 V i
1

r i
0

handles
replicas

Si
1 Si

2

Si 1
2

V i
1

Si 2
2

V i
1

Si 3
2

V i
1

Si 4
2

V i
1

Si 5
2

V i
1

r i
0

Consider an object o0 with n0 replicas, each replica r i
0 of which holds handles h i

1 and h i
2 for distributed

objects o1 and o2, respectively. Figure 5.2(a) shows an instance in which n0 = 1, as would be the case if o0
were a non-replicated client. Let S i

2 denote the private handle key for h i
2 . If r i

0 passes h i
2 in a method

call parameter to h i
1 , then h i

2 makes a copy h ij
2 of itself for replica r j

1 (i.e., the j-th replica of o1), except
h ij

2 is equipped with a newly generated public/private key pair (V ij
2 , S ij

2) before being sent to r j
1 . The

results of this delegation in the case of Figure 5.2(a) are shown in Figure 5.2(b).

After generating a new public/private key pair for each replica of o1, a new statement must be constructed
authorizing a non-faulty set of o1’s replicas to invoke methods on o2. Let V i

2 denote the set {V 1
2
i , . . . ,

V 1
2
in } of public keys created for o1’s replicas, where n1 is the number of replicas of o1, and let b1 be the

number of faults the quorum construction of o1 is designed to mask. Then for each replica r i
1 of o1, the

statement set of h ij
2 is augmented with a statement of the form

V i
2 says (b1 + 1 of V i

2) ⇒ V i
2 , (5.1)

i.e., a certificate signed by S i
2 stating that any subset of b1 + 1 keys in V i

2 is authorized with the same
privileges as V i

2 . (“Says” and “speaks for” (⇒) are common formalisms for expressing credentials, e.g.,
[Lampson92, Ellison99, Appel99, Balfanz00, Bauer02].) Verifying a “signature” σ on a message m with
(b1 + 1 of V i

2) means verifying that at least b1 + 1 of the public keys in {V 1
2
i , . . . , V 1

2
in } can be used to

verify signatures in σ (a set) for m.

Finally, once at least b0 + 1 of handles h j1
2 , h j2

2 , . . . , h jn0
2 have been deployed at r j

1 , r j
1 can coalesce

these handles into a single handle
2

ˆ jh by generating a new public/private key pair (
2

ˆ jV ,
2

ˆ jS) and the

certificate3

3 The handles h j1

2 , h j2
2 , . . . , h jn0

2 need not all be deployed to r j
1 , and some may not be due to failures. Thus, at any point in

time this certificate will concern only the keys S ij
2 that r j

1 has received so far, and can be updated when another handle is
received.

Figure 5.2: Nested objects.

 62

()2
ij

i
AND V says

2 2
ˆ j ij

i
V AND V⎛ ⎞⇒⎜ ⎟

⎝ ⎠
 (5.2)

In this way, requests issued by
2

ˆ jh to o2 replicas will need only sign with
2

ˆ jS , versus each of S j1
2 , . . . ,

S jn0
2 . Of course, the statement set of

2
ˆ jh contains both (5.2) and the union of the statement sets of h j1

2 , . . .

, h jn0
2 , which includes (5.1).

Safety. Consider a method invocation m executed by only faulty handles {
2

ˆ jh }, i.e., by at most b1 replicas

{r j
1 }. Each such invocation is signed by

2
ˆ jS , and so each replica r k

2 that sees this invocation can

determine that
2

ˆ jV , says m and thus that

()2
ij

i
AND V says m

by (2). However, since there are at most b1 j’s for which this holds true, it is not possible to infer that (b1 +
1 of V i

2) says m, or thus that V i
2 says m for any correct r i

0 . Consequently, if any invocation m′ to o2 by o0
requires b0 + 1 replicas of o0 to submit m′, then any invocation m to o2 by o1 will not succeed if only b1
replicas of o1 submit m, and safety follows by induction.

Cost. The latency of the above delegation is dominated by the costs of (i) generating the n1 private key

pairs (S
2
1i , V

2
1i), . . . , (S

2
1in , V

2
1in) at r i

0 ; (ii) generating the private key pair (
2

ˆ jS ,
2

ˆ jV) at r j
1 ; and (iii)

generating the digital signatures for (1) and (2) at r i
0 and r j

1 , respectively. For digital signature schemes
for which key generation is costly, notably RSA [Rivest78], it would be necessary to pre-generate these
keys in the background and store them for use when needed. For this reason, it would be preferable to use
a digital signature scheme, such as DSA [Kravitz93] or ECDSA [ANSI99], for which key generation is
very efficient [Wiener98].4

A method invocation following this delegation, i.e., in which object o1 invokes a method on object o2,

requires each invoking replica r j
1 to digitally sign its request with

2
ˆ jS . Replica r k

2 , upon receiving such a

request, must verify not only its signature but also the signatures of the statement sets forwarded with the
request. This cost is particularly important since as nesting depth increases, the size of generated
statement sets grows. While r k

2 will incur this cost on the first method invocation, caching the verification
status of statements (certificates) should significantly decrease the cost of subsequent method invocations.
Nonetheless, nested method invocations performed after one object has been nested in another will be
dominated by the cost of signature verification, and would thus benefit from a digital signature scheme,
such as RSA, where verification was very efficient [Wiener98]. As keys can be pre-generated, but not

4 Key generation in DSA is efficient once certain global parameters are fixed, i.e., primes typically denoted by p and q, and a
generator g of a subgroup of order q in the integers modulo p. Similarly, ECDSA is typically defined over a fixed curve, which
then allows efficient key generation.

 63

pre-verified, the cost of signature verification is the determining factor in selecting a signature algorithm
for use in a practical system.

Returning Handles. Our framework accommodates returning a handle from a method invocation on a
distributed object in a very similar way. For this, we continue from the above example, and consider that
after the above has transpired, replicas of o0 invoke a method on their corresponding handles for o1, and in
doing so should obtain handles for o2 that should permit the o0 replicas to invoke methods on o2 in the
future. (o0 need not be the same object as in the preceding example, though to simplify notation we
consider it to be.) Note that for r j

1 to perform the invocation, it must be invoked by b0 + 1 replicas of o0,

and it will return a copy
2

ˆ ijh of its handle
2

ˆ jh to the handle h i
1 in r i

0 . Again, however, r j
1 will replace

2
ˆ jS

in
2

ˆ ijh with a newly generated handle key
2

ˆ ijS , and add

2
ˆ jV says (b0 + 1 of

2
ˆ jV) ⇒

2
ˆ jV (5.3)

to the statement set of
2

ˆ ijh , where
2

ˆ jV = {
2

1ˆ jV , . . . ,
2
0ˆ jnV } and b0 is the number of failures the quorum

system for o0 is designed to mask. Just as r j
1 did in the previous case, when handle h i

1 (in replica r i
0)

receives at least b1 + 1 handles
2

ˆ ijh , it coalesces these handles to build a handle
2
ih with a new handle key

2
iS and a statement set including

 ()2
ˆ ij

j
AND V says ()22

ˆi ij

j
V AND V⇒ (5.4)

h i
1 then returns

2
ih from the method invocation, to r i

0 . As before, if only b0 replicas of o0 now attempt to

perform a method invocation m on o2, then no correct replica of o2 will infer (b0 + 1 of
2

ˆ jV) says m, and

so method m will not be invoked. The cost analysis of this case is similar to that above.

Revocation. Distributed objects are typically intended to be long-lasting, and in particular, to outlive the
clients that create them. As a result, it is not practical for the certificates created during delegation (i.e.,
(1)–(4)) to expire; doing so would leave distributed objects stranded with no clients able to access them.
As a result, we opt for a different form of revocation, conceptually similar to the approach in Gasser and
McDermott [Gasser90]: when a JVM no longer requires a reference to a handle and so the handle is
garbage collected, its private handle key is deleted. This implies that once the correct replicas of a
distributed object o1 have deleted their handles for another distributed object o2, the delegation that
permits o1 to invoke methods on o2 can no longer be exercised.

5.4 Operation Ordering
As discussed in Section 5.1, the model of object interaction that we attempt to mimic in our approach is
that offered by Java RMI. The concurrency semantics that most naturally characterize Java RMI,
presuming that remote Java objects process each method invocation in isolation, is linearizability
[Herlihy90]. For the distributed objects we consider, owing to their replication and quorum based access,
we require a method invocation protocol that implements this property. Prior protocols to achieve this
property in systems supporting quorum-based access, notably [Chockler01], assume a correct client. This

 64

assumption is violated in nested object systems, where clients can be replicas of other distributed objects,
some of which may be Byzantine faulty.

The approach we take to method invocations here retains the basic structure of prior quorum-based
protocols in permitting a single client to drive the ordering protocol, but does so without trusting that
client to make any protocol decisions. Rather, this client is used only as a point of centralization to
distribute a set of server messages from which the servers work to make protocol decisions. Forms of
misbehavior, notably sending different messages to different servers, cannot cause correct servers to take
permanent and conflicting actions. In addition, a faulty client cannot prevent progress by falling silent as
another client can unilaterally “take over” driving the protocol.

In order to ensure linearizability, all correct servers must apply operations in the same order. They do this
by indirectly communicating state with other server replicas in a quorum, and then making deterministic
decisions based upon the view they have of the quorum. When a non-faulty client drives the protocol, it
echoes the state of each server replica in a quorum to the other server replicas in some quorum. Server
state consists of the set of pending operations on that replica, and the last distributed object state
committed (σc), proposed (σpc), and suggested (σs) on that replica.

5.4.1 Client Protocol
The client side of the method invocation protocol is shown in Figure 5.3. This protocol consists of two
main parts, shown in lines 2–10 and 11–23 of Figure 5.3, run concurrently as indicated by the “||” in lines
2 and 11. In the first part, the client request (“op”) is forwarded to a quorum Q drawn deterministically
(“←D”, line 4) from a quorum system Q. Deterministic quorum selection ensures that each server replica
in the selected quorum will be contacted by at least bc + 1 client replicas. The client signs its request
(“S(op)”, line 6) using its private key (the handle key of Section 3) and sends the request to each member
of Q. It collects responses ρ into a set R1 until it has at least bs + 1 replicas (line 8), where bs is the number
of replica failures that the quorum system Q is designed to withstand.

In parallel, the client drives the ordering protocol as
shown in lines 11–23 of Figure 5.3. The client runs this
ordering protocol with a particular rank r, which is an
integer value assigned anew by the chooseRank
method each time the client begins the ordering protocol
(line 13). In order to make progress, the same rank must
be kept during each iteration, so the standard behavior of
chooseRank is to leave the current rank unchanged.
However, at any point in time each server will only
interact with the highest ranked client that has contacted
it so far. As such, when a client receives a
RankException from a server (not shown in Figure
5.3), chooseRank selects a new, larger rank for use in
the next round of the ordering protocol. A backoff
strategy could be used to avoid clients repeatedly
interrupting each other; as this does not affect the
underlying protocol, we discuss it in Section 5.4.3.

The core of this part of the client protocol is that it
simply queries each server u in a quorum
Q2 ∈ Q (lines 15-16) by querying u.process(R2, r)
(line 17) where R2 is the set of valid responses gathered
from servers in the previous iteration, until it receives
valid responses from a quorum Q ∈ Q (line 21). Here, a
1. submit(op)
2. || waiting ← true
3. R1 ← Ø
4. Q1 ←D Q
5. ||u∈Q1
6. ρu ← u.submit(S(op))
7. R1 ← ρu ∪ R1
8. until (∃ρ : |{ρu ∈ R1 : ρ = ρu }| ≥ bs + 1)
9. waiting ← false
10. return ρ : |{ ρu ∈ R1 : ρ = ρu }| ≥ bs + 1
11. || R2 ← Ø
12. repeat
13. r ← chooseRank()
14. R3 ← Ø
15. Q2 ← Q
16. || u∈Q2
17. stateu ← u.process(R2, r)
18. if (valid(stateu,R2, r,Vu))
19. Q3 ← {u} ∪ Q3
20. R3 ← stateu ∪ R3
21. until (∃Q ∈ Q : Q ⊆ Q3)
22. R2 ← R3
23. until (waiting = false)
Figure 5.3. Client side of ordering protocol.

 65

response state is valid if the state is consistent with the correct execution of u.process(R2, r), which
includes bearing the current rank r, being properly signed by Su, and bearing values reflecting correct
protocol logic when applied to R2. Validity is tested in line 18, though this is not shown in the figure to
avoid duplicating the server-side logic. Although validity testing by the client can not be relied on to
ensure correctness (as the client could be faulty), it is important in allowing correct clients to determine
when valid responses have been received from a full quorum, without which the next round may be futile.
Note that a valid response is required from every server in a full quorum, which implies that a new
quorum may need to be selected if any members of the original quorum don’t cooperate; alternatively
non-blocking quorums [Bazzi01] could be used, effectively contacting extra servers with the guarantee
that correct responses will be received from a full quorum.

A malicious client could fail to send messages to some or all of the server replicas or at the very worst
could send different messages to different sets of server replicas. As we will demonstrate shortly, the only
possible effect of such misbehavior is that it might temporarily slow progress, but this cannot result in an
incorrect linearization of method invocations.

5.4.2 Server Protocol
The server side of the protocol, as outlined in Figure 5.4, is necessarily more complicated as it handles all
of the protocol’s logic. The process method (on the left of Figure 5.4) is invoked by client replicas’
ordering threads, while the remaining methods (on the right of Figure 5.4) are intended strictly for internal
use by a server replica. For simplicity we do not show the submit method invoked by clients’ submit
threads; this simply adds the submitted operation to the pending set once it has been requested by bc+1
client replicas, and returns a response to the waiting client replicas when the submitted operation has been
ordered and executed.

The bulk of the server-side logic is contained in the process method. This method first confirms that the
rank of the client is at least as large as any rank seen so far, and throws a RankException and
terminates this run of process if not (lines 2–6). After checking the rank and verifying the signatures of
the supplied server replica states (line 9), each server replica takes steps to determine which new object
state should be suggested, proposed or committed next. It does this on the basis of the following values,
which it derives from the server replica states {stateu}u∈Q.

• σ
g
s (line 13) is the state last suggested by some quorum of servers, if any;

• σ
g
pc (line 17) is the state with the highest version number proposed to some correct server or, if

there are multiple such states, the one proposed by the highest ranked proposer;

• σ
g
c (line 21) is the state with the highest version number committed to some correct server; and

• completed is the highest version number for which some quorum has committed a state with that
version number (line 24), or for which some correct server has suggested (line 14) or proposed
(line 19) a state with a strictly higher version number. We say that a state has completed if its
version number is less than or equal to completed at some correct server.

 66

Figure 5.4: Server side of ordering protocol.

In summary, the server takes the following actions, in order. It commits σ
g
c if it cannot determine that it

has been committed at a full quorum (lines 25–26). Otherwise, it looks at σ
g
pc if it exists and is not

already completed (line 27): if σ
g
pc has been proposed to a full quorum by this client (lines 18, 28), it

1. process({ stateu}u∈Q, r)
2. if (r > maxRank)
3. maxRank← r
4. σs ←⊥
5. else if (r < maxRank)
6. throw RankException(maxRank)

7. foreach u ∈ Q
8. 〈contentu, ru〉 ← stateu
9. if (ru = r ∧ Vu says stateu)
10. 〈σ c

u , σ pc
u , σ s

u , pendingu〉 ← contentu
11. else Q ← Q \ u

12. if (∃ Q′ ∈ Q : Q′ ⊆ Q)
13. σ s

g ← σ : ∃ Q′ ∈ Q : Q′ {u : σ = σ s
u }

14. completed ← max{v : |{u : σ s
u .version > v}| ≥ bs + 1}

15. Σ pc

g ← {σ : |{u : σ = σ pc
u }| ≥ bs + 1}

16. Σ 'pc
g ← {σ ∈ Σ pc

g : σ.version = maxσ′ ∈ Σ pc
g {σ′.version}}

17. σ pc
g ← σ ∈ Σ 'pc

g : σ.proposer = maxσ′ ∈ Σ 'pc
g {σ′.proposer}

18. Qpc ← {u : σ pc
u = σ pc

g ∧ σ pc
u .proposer = r}

19. completed← max{completed,
 max{v : |{u : σ pc

u .version > v}| ≥ bs + 1}}

20. Σ c

g ← {σ : |{u : σ = σ c
u }| ≥ bs + 1}

21. σ c
g ← σ ∈ Σ c

g : σ.version = maxσ′ ∈ Σ c
g {σ′.version}

22. Qc ← {u : σ c
u = σ c

g }
23. if (∃ Q′ ∈ Q : Q′ ⊆ Qc)
24. completed← max{completed, σ c

g .version}

25. if (σ c

g ≠⊥ ∧ σ c
g .version > completed)

26. commit(σ c
g)

27. else if (σ pc
g ≠⊥ ∧ σ pc

g .version > completed)
28. if (∃ Q′ ∈ Q : Q′ ⊆ Qpc)
29. commit(σ pc

g)
30. else if (σ pc

g = σ s
g)

31. propose(σ pc
g , r)

32. else
33. suggest(σ pc

g)
34. else if (σ s

g ≠⊥ ∧ σ s
g .version > completed)

35. propose(σ s
g , r)

36. else
37. pendingg ← {op : |{u : op ∈ pendingu}| ≥ bs + 1}
38. if (pendingg ≠ Ø)
39. σ ← addOps(σ c

g , pendingg)
40. suggest(σ)

41. return S(〈σc, σpc, σs, pending〉, r

1. addOps(σ′, pending)
2. repeat
3. op←D pending
4. pending← pending \ {op}
5. if (σ′.reflects(op) = false)
6. σ′.addOp(op)
7. until (pending = Ø)
8. σ′.version ← σ′.version + 1
9. return σ′
1. suggest(σ)
2. if (σs = ⊥)
3. σs ← σ
4. else
5. throw RankException(maxRank)

1. propose(σ, r)
2. σ.proposer ← r
3. σpc ← σ

1. commit(σ)
2. if (σ.version > σc.version)
3. σ.applyOps
4. σc ← σ
5. pending ← pending \
 {op : σ.reflects(op) = true}
6. response ← response|σ. response

 67

commits σ
g
pc (line 29). If σ

g
pc has not been proposed to a full quorum by this client, the server suggests

σ
g
pc if it has not already been suggested at a full quorum (line 33) and proposes σ

g
pc if it has (line 31). If

σ
g
pc does not exist or is already completed, then the server similarly examines σ

g
s , proposing it if it exists

and is not already completed (lines 34–35). If σ
g
s does not need to be acted upon, the server

deterministically orders method invocations that are pending on bs + 1 servers—appending them to the
current state, but not yet executing them; see below—through the addOps operation, and suggests this
state (lines 37–40). We note that in addOps, the predicate σ.reflects(op) indicates whether or not the
operation op is incorporated into the state σ; as such, it prevents duplicate invocations. Finally, the server
signs its current local states that it sees as committed, proposed, and suggested, as well as all pending
invocations and the rank r, and returns this (line 41). It is important to note that the addOps operation

(line 39) does not actually invoke method invocations on the object σ
g
c ; rather, they are just appended for

later application by applyOps (line 3 of commit). With the introduction of nested operations, the scope
of impact of a method invocation on an object is no longer limited to that object. Each invocation can
result in a nested method invocation on another object. As such, it is important to withhold performing
operations until they are actually committed, as a suggested or even a proposed state may never ultimately
be committed.

5.4.3 Liveness
Our discussion so far has focused on safety. Liveness is also an important consideration, especially as a
Byzantine client could end up driving the protocol. It is thus desirable to tolerate faulty clients while still
achieving high throughput with many concurrent clients. A first step towards this is to require clients to
sign their ordering requests with the private key of the associated handle. In conjunction with the
delegation statements defined in Section 5.3, this would ensure that the ordering protocol for a given
distributed object could only be driven by handles which were authorized to invoke methods on that
object.

In addition to ensuring that only authorized handles can drive the ordering protocol, it is also necessary to
prevent Byzantine clients from doing all the driving and thus preventing forward progress. We do this
with a form of backoff similar to [Chockler01], though enforced by server replicas to prevent faulty
clients from repeatedly interrupting the protocol for correct clients. While a faulty client can delay the
ordering protocol during a single round, enforced backoff ensures that correct clients (who are the
majority due to quorum overlap requirements) will regularly be allowed to drive the protocol. Because
operations are applied en masse, high average throughput is maintained by the system despite small
delays during rounds which are driven by Byzantine clients.

5.4.4 Performance
We have implemented the protocol discussed in Sections 5.4.1 and 5.4.2 within the context of a
substantial revision of the Fleet system. As described in Section 1.3, Fleet is a distributed object store
built in Java that implements distributed objects such as those shown in Figure 5.1(a). However, Fleet
previously did not provide support for transparent nesting; in fact, nesting could result in duplicate nested
method invocations, even in the absence of failures [Malkhi01]. As such, our framework provides a useful
extension to the Fleet system.

In our experiments, each server and client was equipped with dual Pentium-III 1GHz processors, running
Linux 2.4.24 SMP and Java HotSpot™ Server VM 1.4.2. The servers and client were connected by
100Mbps Ethernet and utilized TCP for all communication; multicast was not used. Key generation,

 68

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Object replicas (n)

ECDSA
DSA
RSA
HMAC

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 2 4 6 8 10

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Nesting depth

q = 4

(a) Response time per quorum size, with nesting depth of 1 (b) Response time per nesting depth, with quorum size of 4

signing, and signature verification were all performed natively using the Crypto++ Library. All tests were
performed with three signature algorithms: RSA [Rivest78] with 1024-bit keys, DSA [Kravitz93] with
1024-bit keys and ECDSA [ANSI99] with 160-bit keys. By way of comparison, we also adapted our
protocol to use HMACs [Bellare96], using Diffie-Hellman key agreement to establish a shared secret key
between each pair of servers. The quorum system in use was a minimally-sized threshold quorum system
[Malkhi98a], and all method invocations were performed by unreplicated clients.5 In order to measure the
overhead introduced by the ordering protocol, all method invocations performed inexpensive tasks, such
as get and set. Due to the limited set of homogeneous computers at our disposal, we only tested
distributed objects having between n = 1 and n = 36 replicas and with b = 0, yielding quorums of sizes
from q = 1 to q = 20.

Preliminary response times as seen by a client for a relatively unoptimized implementation of this
protocol are shown in Figure 5.5(a). Among the three digital signature algorithms tested here, the use of
RSA signatures, whose verification times are notably faster than the other signature algorithms
[Wiener98], yielded the lowest mean response time. This result reflects the fact that each server replica in
a quorum must sign its own state, but verify signatures on states from every server in a quorum. Note that
the response time growth rate is sublinear while b stays constant, due to the fact that quorums in the
chosen quorum system are asymptotically of size O(bn). Mean response time as a function of nesting
depth is shown in Figure 5.5(b). Single level method invocations from a client to a quorum of replicas
executes in 50 ms. Each additional level of nesting, from one quorum of replicas to another, adds about
90 ms to the total method invocation time. The increased cost of invoking methods between quorums, as
opposed to from an unreplicated client to a quorum, stems from the fact that authorization to invoke the
method must be granted to a quorum instead of a single client, and the results must be authenticated to a
quorum instead of a single client. Note that each level of nesting adds a constant amount to the total
method invocation cost, keeping the total latency linear with respect to nesting depth.

Prior to analyzing the performance of HMACs, it is necessary to understand how their implementation
differs from that of signatures. As part of the ordering protocol, each server replica signs its local state
and sends it to the driving client replica (Figure 5.4, line 41), who then distributes it to a quorum of server
replicas (Figure 5.3, lines 16–17). When using HMACs instead of signatures, it is necessary for each
server replica to include an HMAC for every other server replica, and for the driving client replica to

5 While replicated clients are an important component of our work, the ordering protocol is driven by a single client replica at any
given time.

Figure 5.5. Mean response time.

 69

include the appropriate set of HMACs for each server replica that it contacts. HMACs thus consume more
network bandwidth between server replicas and the driving client replica, as the number of server replicas
grows. Considering this, it is unsurprising that the response time using HMACs does not scale as well as
signatures as n increases.

Another difference resulting from HMACs is that the client is unable to verify them (unlike signatures).
As such, a faulty server that returns invalid HMACs will not be readily detectable to a client, and may
impinge on the client’s ability to complete the protocol. In such circumstances, the client can “fall back”
to a signature-based protocol to better enforce progress.

5.5 Summary
The delegation architecture which we have presented can be used to arbitrarily nest distributed objects,
while ensuring correct system behavior despite a limited number of Byzantine failures in the object
replicas. This is accomplished through the creation of delegation keys and delegation certificates that
work together to authorize the invocation of methods on nested objects. Method invocation capabilities on
a specific distributed object can be delegated to other clients explicitly, and are implicitly delegated to
permit nested method invocations by sufficiently large groups of replicas to succeed transparently.

We presented a novel protocol to achieve linearizability of nested method invocations. Our protocol
tolerates Byzantine faulty clients, as is necessary when methods are invoked from other distributed
objects that themselves must withstand Byzantine faults. We detailed this protocol, argued its correctness,
and described its implementation and performance in a distributed object system. An extension that we
are presently studying is the nested creation of distributed objects, i.e., where one distributed object
creates another. Our framework provides a basis for supporting distributed object creation, but requires us
to address additional issues.

 70

6 REFERENCES
[Abd-El-Malek05a] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter,

Jay J. Wylie. Lazy Verification in Fault-Tolerant Distributed Storage Systems. 24th IEEE
Symposium on Reliable Distributed Systems (SRDS 2005), October 26-28, 2005, Orlando, Florida.

[Abd-El-Malek05b] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J. Wylie. The
Read/Conditional-Write and Query/Update protocols. Technical report CMU-PDL-05-107. Parallel
Data Laboratory, Carnegie Mellon University, Pittsburgh, PA, September 2005.

[Abd-El-Malek05c] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter,
Jay J. Wylie. Fault-Scalable Byzantine Fault-Tolerant Services. SOSP’05, October 23-26, 2005,
Brighton, United Kingdom.

[Adya02] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R.
Lorch, M. Theimer, and R. P. Wattenhofer. FARSITE: federated, available, and reliable storage for
an incompletely trusted environment. Symposium on Operating Systems Design and Implementation,
pages 1-15. USENIX Association, 2002.

[Aguilera00] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the crash-
recovery model. Distributed Computing, 13(2):99-125. Springer-Verlag, 2000.

[ANSI99] ANSI X9.62, Public Key Cryptography for The Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA), American National Standards Institute, 1999.

[Appel99] A. W. Appel and E. W. Felten. Proof-Carrying Authentication. In Proceedings of the 6th ACM
Conference on Computer and Communications Security, November 1999.

[Baker91] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K. Ousterhout.
Measurements of a distributed file system. ACM Symposium on Operating System Principles.
Published as Operating Systems Review, 25(5):198–212, 13– 16 October 1991.

[Balfanz00] D. Balfanz, D. Dean, and M. Spreitzer. A security infrastructure for distributed Java
applications. In Proceedings of 2000 IEEE Symposium on Security and Privacy, May 2000.

[Bauer02] L. Bauer, M. A. Schneider, and E. W. Felten. A General and Flexible Access-Control System
for the Web. In Proceedings of the 11th USENIX Security Symposium, August 2002.

[Bazzi01] R. A. Bazzi. Access cost for asynchronous Byzantine quorum systems. Distributed Computing
14(1):41–48, 2001.

[Bazzi04] R. A. Bazzi and Y. Ding. Non-skipping timestamps for Byzantine data storage systems. DISC,
2004.

[Becker96] B. Becker, S. Gschwind, T. Ohler, P. Widmayer, and B. Seeger. An asymptotically optimal
multiversion btree. VLDB Journal, 5(4):264–275, 1996.

[Bellare96] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication.
Advances in Cryptology - CRYPTO, pages 1–15. Springer-Verlag, 1996.

[Bernstein87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery in
database systems. Addison-Wesley, Reading, Massachusetts, 1987.

[Blackwell95] T. Blackwell, J. Harris, and M. Seltzer. Heuristic cleaning algorithms in log-structured file
systems. USENIX Annual Technical Conference, pages 277– 288. USENIX Association, 1995.

[Bracha85] G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols. Journal of the
ACM, 32(4):824-840. ACM, October 1985.

 71

[Busi01] N. Busi and G. Zavattaro. On the Serializability of Transactions in JavaSpaces. In Proc. of
International Workshop on Concurrency and Coordination, Electronic Notes in Theoretical Computer
Science, Vol. 54, July 2001.

[Cachin01] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asynchronous
broadcast protocols. In Advances in Cryptology – CRYPTO '01, pages 524–541, August 2001.

[Cachin02] C. Cachin and J. A. Poritz. Secure intrusion-tolerant replication on the Internet. International
Conference on Dependable Systems and Networks, pages 167-176. IEEE, 2002.

[Cachin05a] C. Cachin and S. Tessaro. Asynchronous verifiable infromation dispersal. Symposium on
Reliable Distributed Systems. IEEE, 2005.

[Cachin05b] C. Cachin and S. Tessaro. Brief announcement: Optimal resilience for erasure-coded
Byzantine distributed storage. International Symposium on Distributed Computing. Springer, 2005.

[Castro] M. Castro and R. Rodrigues. BFT library implementation. http://www.pmg.lcs.mit.edu/bft/#sw.

[Castro01] M. Castro and B. Liskov. Byzantine fault tolerance can be fast. Dependable Systems and
Networks, pages 513–518, 2001.

[Castro02] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery. ACM
Transactions on Computer Systems, 20(4):398-461, November 2002.

[Chockler01] G. Chockler, D. Malkhi, and M. K. Reiter. Backoff protocols for distributed mutual
exclusion and ordering. In Proceedings of the 21st International Conference on Distributed
Computing Systems, pages 11–20, April 2001.

[Cristian95] F. Cristian, H. Aghili, R. Strong and D. Dolev. Atomic broadcast: from simple message
diffusion to Byzantine agreement. Information and Computation 118(1):158–179, April 1995.

[Dabek01] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide area cooperative storage
with CFS. In Proceedings of the 18th ACM Symposium on Operating System Principles, pages 202–
215, October 2001.

[Dai-a] W. Dai. Crypto++. http://cryptopp.sourceforge.net/docs/ref/.

[Dai-b] W. Dai. Crypto++. http://www.cryptopp.com/.

[Dwork88] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the ACM 35(2):288–323, April 1988.

[Ellison99] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and T. Ylonen. SPKI
Certificate Theory, September 1999. RFC2693.

[Feldman87] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. IEEE
Symposium on Foundations of Computer Science, pages 427–437. IEEE, 1987.

[Fischer85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382. ACM Press, April 1985.

[Frolund03] S. Frølund, A. Merchant, Y. Saito, S. Spence, and A. Veitch. FAB: enterprise storage
systems on a shoestring. Hot Topics in Operating Systems, pages 133–138. USENIX Association,
2003.

[Fry04] C. P. Fry and M. K. Reiter. Nested objects in a Byzantine quorum-replicated system. In
Proceedings of the 2004 IEEE Symposium on Reliable Distributed Systems, pages 79–89, October
2004.

 72

[Ganger03] G. R. Ganger, J. D. Strunk, and A. J. Klosterman. Self-* Storage: brick-based storage with
automated administration. Technical Report CMU-CS-03-178. Carnegie Mellon University, August
2003.

[Gasser90] M. Gasser and E. McDermott. An architecture for practical delegation in a distributed system.
In Proceedings of the 1990 IEEE Symposium on Research in Security and Privacy, pages 20–30, May
1990.

[Golding95] [9] R. Golding, P. Bosch, C. Staelin, T. Sullivan, and J.Wilkes. Idleness is not sloth. Winter
USENIX Technical Conference, pages 201–212. USENIX Association, 1995.

[Gong89] L. Gong. Securely replicating authentication services. International Conference on Distributed
Computing Systems, pages 85–91. IEEE Computer Society Press, 1989.

[Goodson03] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. Efficient Byzantine-tolerant
erasure-coded storage. Technical report CMU-PDL-03-104. CMU, December 2003.

[Goodson04a] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. Efficient Byzantine-tolerant
erasure-coded storage. International Conference on Dependable Systems and Networks, 2004.

[Goodson04b] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. The safety and liveness
properties of a proto- col family for versatile survivable storage infrastructures. Technical report
CMU–PDL–03–105. Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh, PA, March
2004.

[Gray96] J. Gray, P. Helland, P. O'Neil, and D. Shasha. The dangers of replication and a solution. ACM
SIGMOD International Conference on Management of Data. Published as SIGMOD Record,
25(2):173-182. ACM, June 1996.

[Gribble00] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler. Scalable, distributed data
structures for internet service construction. Symposium on Operating Systems Design and
Implementation, 2000.

[Herlihy87] M. P. Herlihy and J. D. Tygar. How to make replicated data secure. Advances in Cryptology
- CRYPTO, pages 379–391. Springer-Verlag, 1987.

[Herlihy90] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3):463–492, 1990.

[Herlihy91] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages,
13(1):124–149. ACM Press, 1991.

[Herlihy03] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: double-ended
queues as an example. International Conference on Distributed Computing Systems, pages 522-529.
IEEE, 2003.

[Hitz94] D. Hitz, J. Lau and M. Malcolm. File system design for an NFS file server appliance. In
Proceedings of the 1994 Winter USENIX Technical Conference, pages 235–246, January 1994.

[Howard88] J. H. Howard et al. Scale and performance in a distributed file system. ACM Transactions on
Computer Systems, 6(1):51– 81, February 1988.

[Jayanti98] P. Jayanti, T. D. Chandra, and S. Toueg. Fault-tolerant wait-free shared objects. Journal of the
ACM, 45(3):451–500. ACM Press, May 1998.

[Jiménez-Peris03] R. Jiménez-Peris, M. Patiño-Martínez, G. Alonso, and B. Kemme. Are quorums an
alternative for data replication? ACM Transactions on Database Systems (TODS), 28(3):257-294.
ACM, September 2003.

 73

[Katcher97] J. Katcher. PostMark: a new file system benchmark. Technical report TR3022. Network
Appliance, October 1997.

[Kihlstrom01] K. P. Kihlstrom, L. E. Moser and P. M. Melliar-Smith. The SecureRing group
communication system. ACM Transactions on Information and System Security 4(4), November
2001.

[Kravitz93] D. W. Kravitz. Digital signature algorithm. U.S. Patent 5,231,668, 27 July 1993.

[Kubiatowicz00] J. Kubiatowicz et al. OceanStore: an architecture for globalscale persistent storage.
Architectural Support for Programming Languages and Operating Systems, 2000.

[Kung81] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM
Transactions on Database Systems, 6(2):213-226, June 1981.

[Kursawe02] K. Kursawe. Optimistic Byzantine agreement. Symposium on Reliable Distributed Systems,
pages 262-267. IEEE, 2002.

[Lamport78] L. L. Lamport. The implementation of reliable distributed multiprocess systems. Computer
Networks, 2:95-114, 1978.

[Lamport82] L. Lamport, R. E. Shostak and M. C. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems 4(3):382–401, July 1982.

[Lamport98] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133-
169. ACM Press, May 1998.

[Lampson92] B. Lampson, M. Abadi, M. Burrows and E. Wobber. Authentication in distributed systems:
Theory and practice. ACM Transactions on Computer Systems 10(4):265–310, November 1992.

[Litwin00] W. Litwin and T. Schwarz. LH*RS: a high-availability scalable distributed data structure
using Reed Solomon Codes. ACM SIGMOD International Conference on Management of Data,
pages 237-248. ACM, 2000.

[MacCormick04] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou. Boxwood:
abstractions as the foundation for storage infrastructure. Symposium on Operating Systems Design
and Implementation, pages 105-120. USENIX Association, 2004.

[Malkhi97] D. Malkhi and M. Reiter. Byzantine quorum systems. ACM Symposium on Theory of
Computing, pages 569–578. ACM, 1997.

[Malkhi98a] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing 11(4):203–
213, 1998.

[Malkhi98b] D. Malkhi and M. Reiter. Secure and scalable replication in Phalanx. In Proceedings of the
17th IEEE Symposium on Reliable Distributed Systems, pages 51–58, October 1998.

[Malkhi00a] D. Malkhi and M. K. Reiter. An architecture for survivable coordination in large distributed
systems. IEEE Transactions on Knowledge and Data Engineering, 12(2):187–202. IEEE, April 2000.

[Malkhi00b] D. Malkhi, M. Reiter, and A. Wool. The load and availability of Byzantine quorum systems.
SIAM Journal of Computing, 29(6):1889-1906. Society for Industrial and Applied Mathematics,
April 2000.

[Malkhi01] D. Malkhi, M. K. Reiter, D. Tulone, and E. Ziskind. Persistent objects in the Fleet system. In
Proceedings of the 2nd DARPA Information Survivability Conference and Exposition, Vol. II, pages
126– 136, June 2001.

 74

[Martin02] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage. International Symposium
on Distributed Computing, 2002.

[Morris02] R. Morris. Storage: from atoms to people. Keynote address at Conference on File and Storage
Technologies, January 2002.

[Moss81] J. E. B. Moss. Nested transactions: An approach to reliable distributed computing. Ph.D.
Thesis, Massachusetts Institute of Technology, May 1981.

[Moss86] J. E. B. Moss. An Introduction to Nested Transactions. COINS TR 86-41, University of
Massachusetts, Department of Computer Science, September 1986.

[Mullender85] S. J. Mullender and A. S. Tanenbaum. A distributed file service based on optimistic
concurrency control. In Proceedings of the 10th ACM Symposium on Operating System Principles,
pages 51–62, December 1985.

[Naor98] M. Naor and A. Wool. The load, capacity, and availability of quorum systems. SIAM Journal
on Computing, 27(2):423-447. SIAM, April 1998.

[Narasimhan99] P. Narasimhan, K. P. Kihlstrom, L. E. Moser and P. M. Melliar- Smith. Providing
support for survivable CORBA applications with the Immune system. In Proceedings of the 1999
IEEE International Conference on Distributed Computing Systems, pages 507– 516, May 1999.

[Noble94] B. D. Noble and M. Satyanarayanan. An empirical study of a highly available file system.
Technical Report CMU–CS– 94–120. Carnegie Mellon University, February 1994.

[Pedersen91] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
Advances in Cryptology - CRYPTO, pages 129–140. Springer- Verlag, 1991.

[Pierce01] E. T. Pierce. Self-adjusting auorum systems for Byzantine fault tolerance. Technical Report
TR-01-07, Deparment of Computer Sciences, The University of Texas at Austin. March 2001.

[Pittelli89] F. M. Pittelli and H. Garcia-Molina. Reliable scheduling in a TMR database system. ACM
Transactions on Computer Systems 7(1):25–60, February 1989.

[Rabin89] M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance.
Journal of the ACM, 36(2):335–348. ACM, April 1989.

[Reed80] D. P. Reed and L. Svobodova. SWALLOW: a distributed data storage system for a local
network. In Proceedings of the International Workshop on Local Networks, August 1980.

[Reed83] D. P. Reed. Implementing atomic actions on decentralized data. ACM Transactions on
Computer Systems 1(1):3–23, February 1983.

[Reiter94] M. K. Reiter. Secure agreement protocols: Reliable and atomic group multicast in Rampart. In
Proceedings of the 2nd ACM Conference on Computer and Communication Security, pages 68–80,
November 1994.

[Reiter95] M. K. Reiter. The Rampart toolkit for building high-integrity services. Theory and Practice in
Distributed Systems (Lecture Notes in Computer Science 938), pages 99–110, 1995.

[Rhea03] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond: the
OceanStore prototype. Conference on File and Storage Technologies. USENIX Association, 2003.

[Rivest78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21(2):120–126, Feb. 1978.

 75

[Rivest92] R. L. Rivest. The MD5 message-digest algorithm, RFC-1321. Network Working Group, IETF,
April 1992.

[Rosenblum92] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured
file system. ACM Transactions on Computer Systems, 10(1):26–52. ACM Press, February 1992.

[Rowstron01] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles, pages 188–201, October 2001.

[Ruemmler03a] C. Ruemmler and J. Wilkes. UNIX disk access patterns. Winter USENIX Technical
Conference, pages 405–420, 1993.

[Ruemmler03b] C. Ruemmler and J. Wilkes. A trace-driven analysis of disk working set sizes. HPL–
OSR–93–23. Hewlett- Packard Company, April 1993.

[Santry99] D. J. Santry, M. J. Feeley, and N. C. Hutchinson. Elephant: the file system that never forgets.
In Proceedings of the 1999 Workshop on Hot Topics in Operating Systems, 1999.

[Schneider90] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys 22(4):299– 319, December 1990.

[Shrivastava92] S. K. Shrivastava, P. D. Ezhilchelvan, N. A. Spiers and A. Tully. Principal features of the
Voltan family of reliable node architectures for distributed systems. IEEE Transactions on Computers
41(5):542–549, May 1992.

[Soules02] C. A. N. Soules, G. R. Goodson, J. D. Strunk and G. R. Ganger. Metadata efficiency in a
comprehensive versioning file system. Technical report CMU–CS–02–145, Carnegie Mellon
University, 2002.

[Soules03] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger. Metadata efficiency in
versioning file systems. Conference on File and Storage Technologies, pages 43–58. USENIX
Association, 2003.

[Steiner88] J. G. Steiner, J. I. Schiller, and C. Neuman. Kerberos: an authentication service for open
network systems. Winter USENIX Technical Conference, pages 191–202, 9–12 February 1988.

[Strunk00] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N. Soules, and G. R. Ganger. Self-
securing storage: protecting data in compromised systems. Symposium on Operating Systems Design
and Implementation, pages 165–180. USENIX Association, 2000.

[Thambidurai88] P. Thambidurai and Y.-K. Park. Interactive consistency with multiple failure modes.
Symposium on Reliable Distributed Systems, pages 93–100. IEEE, 1988.

[VanRenesse04] R. van Renesse and F. B. Schneider. Chain replication for supporting high throughput
and availability. Symposium on Operating Systems Design and Implementation, pages 91-104.
USENIX Association, 2004.

[Wang04] X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for Hash Functions MD4, MD5, HAVAL-
128 and RIPEMD. Report 2004/199. Cryptology ePrint Archive, August 2004. http://eprint.iacr.org/.

[Wiener98] M. J. Wiener. Performance Comparison of Public-Key Cryptosystems. CryptoBytes 4(1):1–5,
1998.

[Wool98] A. Wool. Quorum systems in replicated databases: science or fiction. Bull. IEEE Technical
Committee on Data Engineering, 21(4):3-11. IEEE, December 1998.

 76

[Wylie00] J. J. Wylie et al. Survivable information storage systems. IEEE Computer, 33(8):61–68. IEEE,
August 2000.

[Wylie01] J. J. Wylie, M. Bakkaloglu, V. Pandurangan, M. W. Bigrigg, S. Oguz, K. Tew, C. Williams, G.
R. Ganger, and P. K. Khosla. Selecting the right data distribution scheme for a survivable storage
system. Technical report CMU-CS-01-120, Carnegie Mellon University, May 2001.

[Wylie04] J. J. Wylie, G. R. Goodson, G. R. Ganger, and M. K. Reiter. A protocol family approach to
survivable storage infrastructures. FuDiCo II: S.O.S. (Survivability: Obstacles and Solutions), 2nd
Bertinoro Workshop on Future Directions in Distributed Computing, 2004.

[Wylie05] J. J. Wylie A read/write protocol family for versatile storage infrastructures. Carnegie Mellon
University Ph.D Dissertation. CMU-PDL-05-108, October 2005.

[Zhou02] L. Zhou, F. B. Schneider, and R. V. Renesse. COCA: A secure distributed online certification
authority. ACM Transactions on Computer Systems, 20(4):329-368. ACM, November 2002.

